
J .  Fluid Mech. (1986), vol. 171, p p .  21S261 

Printed in Great Britain 
219 

Boundary-layer receptivity to unsteady pressure 
gradients: experiments and overview 

By M. NISHIOKA 
College of Engineering, University of Osaka Prefecture, Sakai, Osaka, Japan 

AND M. v. MORKOVIN 
Department of Mechanical and Aerospace Engineering, Illinois Institute of Technology, 

Chicago, IL 60616, U.S.A. 

(Received 11 September 1984 and in revised form 2 April 1986) 

The experimental evidence on the mechanisms of forcing of unstable vorticity waves 
(the TollmienSchlichting4chubauer or TS waves) of circular frequency w and 
wavelength A,, in wall layers by unsteady pressure gradients of amplitude A and 
frequency o is reviewed and found to be confused and contradictory. It is proposed 
that a likely effective receptivity mechanism rests on the fact that under realistic 
conditions A varies with distance x along any body of finite thickness, A(x) ,  and 
introduces thereby additional characteristic lengths which can match ATs. Heuristic 
arguments suggest that through A(x) the pressure gradient infuses vorticity a t  the 
wall and forces spatial growth of the TS mean-square vorticity $, at a rate 
proportional to the real part of AAF(kTs), the contribution of A(z )  between x-4ATs 
and x+$l,, to the Fourier transform AF(k)  at k = k,,. A second input into s",s 
growth corresponds to the conversion of the steady boundary-layer vorticity into 
unsteady CTs, through the action of vf, the normal velocity of the forcing field. The 
rate is given by so vfCTS U"(y)dy and is proportional to the imaginary part of 
k ~ s  AAdkTs). 

The proposition is consistent in all currently verifiable respects with one numerical 
and a series of laboratory experiments. In  the laboratory experiments, various 
configurations of a pulsating pressure source and shielding plates located in the free 
stream supplied the variable-amplitude pressure gradients over the nearby flat-wall 
boundary layer. Three of the cases presented here demonstrate that stationary 
unsteady pressure fields induce Stokes-like sublayers when the boundary layer is 
stable and self-excited vorticity waves when it is unstable. The results of a fourth 
experiment suggest that unsteady pressure sources in wakes near the boundary layer 
can force the growth of unstable wall waves at the wake frequencies even though 
their propagation speeds differ. Material is also presented on key Soviet experiments 
and views on receptivity. Finally, these experiments and ours are examined for 
consistency and complementarity. 

8 -  

1. Introduction 
Ever since the 1943 experiments of Schubauer & Skramstad (1948) it has been 

generally accepted that propagating shear-wave solutions of the Orr-Sommerfeld 
(0s) equations can be generated by 'external oscillating fields' which are fixed, i.e. 
'standing' with respect to a laboratory observer. Both their vibrating ribbon 
and their oscillating pressure field issuing through a small hole in the wall under the 
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Blasius boundary layer set up forced local standing fields of the form 
V,, = fnf(z, y, z )  exp ( - id)  ; heref,, represents the velocity vector, and the subscript 
f indicates forcing. A t  downstream distances, sufficiently long for the particular 
solution of the forced system to decay to negligible values, the observed response of 
their boundary layer was experimentally indistinguishable from free solutions of the 
homogeneous Orr-Sommerfeld equations as then known. 

Gaster’s concepts of spatially developing instability waves make a conceptualiza- 
tion of the Schubauel-Skramstad experiments quite straightforward. At some 
station xt, slightly downstream from the ribbon or the hole, the measurable unsteady 
fieldsf,(zt, y, z )  exp ( - id )  constitute initial conditions at the plane xt = constant for 
the spatial development of the long-range linearized response of the boundary layer. 
According to Salwen & Grosch (1981), the initial fields (at least in the two-dimensional 
case of the ribbon) can be represented in terms of the discrete and continuous spectral 
y-eigenfunctions of the 0s solutions associated with the forcing frequency o. The 
contributions from the discrete spectra, other than the fundamental, decay rapidly 
downstream, and the response field should then evolve into the characteristic 
Tollmien-Schlichting-Schubauer (TS) travelling waves observed by Schubauer & 
Skramstad. In this linear system, of course, the initial conditions in time become 
irrelevant after the more complex vorticity fields generated at the start of the 
oscillations are convected off the plate. Gaster (1975) and Gaster & Grant (1975) 
successfully extended these concepts to the spatio-temporally evolving wave packets 
in the (z,z)-plane when the boundary layer was disturbed by an impulse-like puff 
from a hole under the layer. 

These classical experiments in which the forcing disturbances were introduced very 
locally within the boundary layer are now recognized as special cases of receptivity 
of shear layers to externally imposed disturbance fields, either standing or propagating 
with speeds distinctly different from those of the free 0s solutions. For further 
clarification, the reader is referred to Reshotko’s (1976) discussion of receptivity and 
its relation to the onset of turbulence in the boundary layer caused by the presence 
of weak turbulent and acoustic fluctuations in the free stream. The early experimental 
evidence for receptivity mechanisms was outlined by Morkovin (1978, pp. 12-15). 

Experiments on the receptivity to unsteady pressure fields including sound have 
been particularly inconclusive, if not confusing. With a few exceptions, they suffered 
from (i) poor quantitative characterization of the forcing field along the outer edge 
of the boundary layer, (ii) inadequate local information on the fluctuations in the 
boundary layer in the region where the stimulated unstable response starts growing, 
(iii) lack of documentation of potentially singular diffraction fields around the leading 
edge and/or the singular effects of vibrations of the leading edge, and (iv) excessive 
forcing disturbance levels. Therefore only the more revealing, less speculative 
references are discussed here. Improving on (i) and (ii) is necessary if the several 
possible mechanisms of receptivity are to be reliably identified. Removing deficiencies 
of type (iii) and (iv) would eliminate many of the current speculations about 
secondary receptivity paths in past experiments. 

To be sure, experiments on receptivity to unsteady pressure gradients are very 
difficult; desiderata are more easily formulated than they are satisfied in practice. 
Because of their non-parabolic nature, ambient pressure fields generally influence the 
whole flow field and are not restricted to local boundary-layer effects as in the 
Schubauer-Skramstad experiments. Furthermore, wakes from any support systems 
including probes are much more sensitive to sound than wall boundary layers ; near 
wakes can become secondary sources of unsteady pressure fields which may 
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contaminate the primary forcing field. Because of the pervasive nature of the forcing 
pressure fields, any local measurement of the fluctuating x-component of perturbation 
velocity lul exp ( - iwt + i$u) represents a superposition of the primary and secondary 
forcing fields, as well as the evolving standing and propagating response fields. At 
present there is no operational way of decomposing the signal into its constituent 
fields. To aid the decomposition in two-dimensional experiments the actual periodic 
forcing pressure fields are best specified by measuring lul and q5u along a contour 
surrounding the (2, y)-region where the conversion to TS vorticity waves takes place, 
or by equivalent ‘input’ measurements. 

With the exception of the Morkovin-Paranjape (1971) study of acoustic forcing 
of two-dimensional jets and shear layers, in past experiments sound was beamed at 
the models ‘globally’, from rather remote fixed loudspeakers a t  high sound levels of 
95-120 dB. The fixed sound-model geometries made comparisons among experiments 
more difficult. The high disturbance levels can evoke response through nonlinear 
mechanisms, leading to receptivity paths and transition through higher harmonics, 
as observed by Knappe & Roache (1966, figure 34) and Vlasov, Ginevskii & 
Karavosov (1977, figure 5). High sound levels also tend to bring local acoustic 
resonances to non-negligible levels (e.g. Shapiro’s 1977, figure 11, contaminating 
standing waves) and to structural resonances. In fact, Kachanov, Kozlov t Levchenko 
(1975) found a convincing correlation between the vibrations of their 1 cm thick flat 
plate as function of the frequency of forcing acoustic fluctuation and the observed 
instability growth and transition : they point to the acoustically induced vibrations 
of the leading edge as the probable dominant cause of their transition. 

In the same wind tunnel, an imaginative use of two travelling sensors by Polyakov, 
Domaratskii & Skurlatov (1976) disclosed two types of responses on their sturdier 
2.5 cm thick plate. In  one response, rapid growth of unstable propagating shear 
waves was observed to ‘start’ at conditions corresponding to a locus halfway 
between the two branches of the theoretical neutral curve, their figure 7. In a second 
response (their figure 5) ,  fluctuations in the boundary layer existed at the upstream 
reach of their traversing probe, decayed somewhat and then started growing again 
near the same locus as the first group. Both groups reached maximum amplitude at 
the upper branch of the neutral curve and could be observed for some distance into 
the damped region (their figure 7) .  Originally Polyakov et aE. stated that the second 
group of early excited waves remained unexplained, but in 1979 after lengthy 
discussion Polyakov agreed with Kachanov et al. (1975) that i t  probably represented 
waves excited near the leading edge by vibrational motion or some other singular 
behaviour. These are typical speculations consistent with the available but very 
inadequate database. Other speculations on the behaviour of the fluctuations in the 
flat-plate experiments by Shapiro (1977) were advanced by Leehey t Shapiro 
(1980) and Leehey (1980). To support Leehey’s speculations, Gedney (1983) demon- 
strated that TS waves excited by a loudspeaker on the same 1.25 cm thin plate with 
a 6: 1 semi-elliptic nose, could be effectively cancelled by vibrating the plate leading 
edge with the right phase and amplitude. We shall return to the issue of leading-edge 
vibrations in $95.2 and 5.3. 

The interest of Soviet experimentalists in receptivity to moving external vortex 
flows and to acoustic environments led to many papers published in Russian from 
about 1967. The more important results have been summarized in two Russian 
monographs, Ginevskii, Vlasov & Kolesnikov (1978) and, especially, Kachanov, 
Kozlov & Levchenko (1982, pp. 7 4 4 ,  135-139), hereinafter referred to as KKL 
(1982). KKL (1982) present their interpretation of the experimental receptivity 
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PIQTJRE 1. Hot-wire measurements of total signal u' yielding an interference pattern between a 
forcing acoustic wave of 138 Hz at nearly constant 104 dB and the growing TS response on a flat 
plate downstream of a strip of Mylar tape 12 mm wide and 34.5k2.5 Fm high. As indicated, the 
tape is 0.565 m from the leading edge at a local Re,. of 1550 and S* x 1 mm. Aizin & Polyakov 
(1979). 

paths on pp. 4044 .  Unfortunately, the experience and views on receptivity of the 
Novosibirsk school remain virtually unknown outside the USSR ; their essence is 
described in $5  where we search for a broader view which would accommodate all 
the reliable experiments. The KKL brief reference to Aizin & Polyakov (1979), an 
unpublished paper in Russian, received after the first draft of this paper, deserves 
amplification ; see the Appendix. Their key graph represents the clearest illustration 
of receptivity to sound and is reproduced here in figure 1 for conceptual reference. 
It displays the amplitude of the total horizontal velocity fluctuations at an 
unspecified height of a flat-plate boundary layer downstream of an extremely thin 
narrow strip of Mylar fastened to the wall as indicated. (See discussion of equation 
(3.1) and figure 4 for interpretation.) As the width of the strip is only a quarter of 
the induced TS wavelength, $IhTS, the region of high receptivity in this case is 
uncommonly localized. The localized solution of the non-homogeneous problem 
evidently evolves rapidly into an interference pattern between the upstream- 
propagating acoustic field and the spatially growing TS wave - the non-decaying part 
of the solution of the homogeneous problem. This better sample of past investigations 
makes it clear that identification of the 'start ' of the TS response in experiments - 
e.g. those of Polyakov et al. (1976) - is marred by lack of information on the forcing 
and response fields as functions of x and y. To reveal the nature of the receptivity 
mechanism numerous detailed profiles of the evolution of the amplitude ~'(2, y) and 
the phase $(x, y) in the proximity of the Mylar strip, 0.5 < x < 0.6 are needed. 

In more general situations (as in our experiments) the locally generated vorticity 
waves will not be perfectly in phase with vorticity waves generated farther down- 
stream, and we should expect less regular early growth, including partial cancellations. 
In  fact, in a layer of constant thickness S disturbed by an unsteady pressure gradient 
ap/i3x of constant amplitude A ,  the induced TS waves should cancel as a consequence 
of the mismatch of the two wavelengths, A,, and A,,, at the same frequency. It is 
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not surprising, therefore, that the TS receptivity of the idealized Blasius boundary 
layer on a rigid, smooth semi-infinite flat plate to a grazing sound wave is exceedingly 
small and that its active region should be traceable to the region near the leading 
edge where x-dependence of the combined system is largest. Analyses of Goldstein 
(1983) and Goldstein, Sockol & Sanz (1983) as well as numerical calculations of 
Murdock (1980) imply that the vorticity waves generated in this region would decay 
by a t  least three orders of magnitude before they could start amplifying past their 
critical Reynolds number. The receptivities found by Kachanov et al. (1975), 
Polyakov et al. (1976) and Shapiro (1977) on their flat plates with finite thickness 
are therefore unlikely to rest on the mechanism of Goldstein's (1983) analysis for the 
evidently over-idealized problem. The most likely cause for enhanced receptivity is 
sharper dependence on x of the characteristics of the boundary layer and/or of the 
exciting sound; the cancellation of effects discussed above will then diminish and a 
measurable TS wave might be able to grow. The x-dependence of the system can arise 
in many ways; thus a number of receptivity paths can be expected even in the purely 
linear phenomena ; see Goldstein ( 1985). 

In $2 we describe a receptivity mechanism for the general case of flows around 
bodies with finite thickness in which the amplitude of the unsteady pressure gradient 
A(x) varies along the surface. The x-dependent growth of the boundary layer is 
secondary to the mechanism and can be neglected. Also the characteristic lengths 
induced by mean pressure gradients are purposely avoided so as to provide a clear 
test within the well-known stability characteristics of the Blasius boundary layer. 
The disturbance velocity field is made up of the periodic forcing field up (particular 
solution of the linearized Navier-Stokes equations), uTS the fundamental-mode field 
(part of the homogeneous solution), and ud, the always damped part of the 
homogeneous solution (made up of higher discrete modes and continuous modes). 
Heuristic considerations of unsteady vortical fields C(x, y ,  t )  show that time mean 
square of TS enstrophy z ( x ,  y )  is generated at the wall with __ source strength 
2(i3p/i3x)cTs per unit area, and inside the layer at the rate 2U"vCT, per unit volume 
as transfer from mean flow vorticity. The net input rate is found to be proportional 
to a local Fourier transform of A(x), AA,(kTs), evaluated at the wavenumber of the 
TS field for the given frequency and Reynolds number. In other words, the sole 
x-variation present, that of the amplitude of +/ax, A(x), introduces the needed 
characteristic lengths in the forcing field (besides the acoustic wavelength) which can 
match the TS wavelength and thereby feed the uTs field. 

In $3 we describe the experimental setting, equipment, and techniques designed 
to mitigate the difficulties (i)-(iv) of earlier experiments on receptivity. The results 
are presented and discussed in $4. In $5 we attempt to reconcile the experience and 
views of the Novosibirsk group with ours. Their key work on the role of the leading 
edge, vibrations due to acoustic loads, and the normal velocity component is briefly 
described. These and other Soviet experiments and ours are then examined for 
consistency and complementarity. Appendix 1 contains more detailed information 
on the paper of Aizin & Polyakov (1979). 

2. A receptivity mechanism and its experimental implications 
2.1. Behaviour of unsteady Jields near walls 

Since acoustic fields are irrotational except near solid boundaries, it is logical to look 
to the viscous ('acoustic') sublayers of these pressure fields for one component of 
mechanisms that could generate the growing vorticity waves. According to the no-slip 
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boundary conditions, all non-uniform pressure fields do generate spanwise wall 
vorticity sources of strength 

per unit area per unit time, Lighthill (1963, p. 54). Here u is the streamwise velocity 
component, v denotes the kinematic viscosity, and p and p the pressure and density 
respectively. 

Equation (2.1) applies to both steady and unsteady pressure fields, including 
acoustic near and far fields. This conversion of unsteady pressure gradients into wall 
sources of unsteady vorticity is operative in all receptivity paths. Conditions for its 
positive contribution to growing in a strictly parallel Blasius layer are explored 
in $2.4. For harmonic excitation, the terms in (2.1) represent amplitude and phase 
relationships after factorization of exp(- id) ,  with w equal to 2n times the 
frequency f in Hz. According to Morse & Ingard (1968, p. 289), the solution for a 
uniform monochromatic wave with acoustic pressure gradient of amplitude A, 
travelling along a flat plate, and for its viscous sublayer, is to the first order in the 
small quantity S = (2v/w)t, the Stokes thickness, 

A 
k 

pa, = - exp ik(x-cct), (2 .24  

(2.2b) 

where k represents the wavenumber, and c the speed of sound, so that w = kc. For 
y/S > 6 the field (2.2) becomes operationally indistinguishable from that of the 
acoustic plane wave u = p / p c .  The associated, outward-diffusing vorticity distribution 
is large, of order 11s: 

(i - exp i(kx - w t )  . g = - -  exp - 
A i - 1  

PW s S 

Its amplitude decays exponentially away from a high maximum at the wall, where 
it is fed by the pressure-induced sources in accordance with (2.1). When the acoustic 
wave is not grazing the wall, the field pac,  uac, v,, is modified by the reflected wave, 
but the sublayer terms involving S retain their functional form, Morse & Ingard 
(1968, p. 289). For infinite wavelength, k+O, the vorticity distribution is identical 
with that of an infinite plate oscillating with respect to the fluid at  rest, as first 
derived by Stokes. Theoretical and experimental evidence, summarized by Loehrke, 
Morkovin & Fejer (1975), indicates that when a mean external flow U is present, 
(2.2b) and (2.3) with k+O are essentially superposable on the mean-flow boundary 
layer when S is small. 

Lin (1955, equation 4.5.7) showed that the distribution (2.3) also fits the near-wall 
vorticity field in the Tollmien-SchlichtingSchubauer instability waves within 
boundary layers, provided that c stands for the propagation speed c = fATs = w/k, 
of these waves. For spatially developing TS waves, k = k,+ik,; the exponential 
terms in (2.2b) and (2.3) then stand for exp ( -  k, x) exp ik,(z-ct). The wavelength A, 
of amplified TS waves is on the order of at least 30 displacement thicknesses 6*, i.e. 
very much shorter than the acoustic wavelength A,, at the same frequency. As 
noted, it is this discrepancy between the characteristic lengths ATs and A,, that 
makes the initiation of TS waves by sound waves a very difficult problem. An 
acoustically induced Stokes-layer patch of, say, positive vorticity over a half cycle 
of the sound wave would have to enhance the net amplitude of a large number of 
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plus-minus vorticity half-cycles of the TS waves. (This will be tested through (2.6) 
below.) 

Actually the wavelength A,, is the sole characteristic length of the vorticity 
induced at the wall only in the idealized case of a uniform sound beam parallel to 
the perfectly flat plate of zero thickness. For practical geometries the amplitude A 
of the forcing waves varies with distance along any shaped body; additional 
characteristic lengths then arise through the variation A ( z ) ,  rather than through the 
harmonic variation in expikx in ( 2 . 2 ~ ) .  Thus in the experiments of Kegelman & 
Mueller (1986) reflection and diffraction of the exciting sound fields around the 
shoulder of an ogive-cylinder model brought forth local variations in ap/ax on scales 
much shorter than A,, and a remarkable sensitivity to excitation over a wide sound 
frequency range, 500-1000 Hz, at a fixed body Reynolds number of 8 x lo5; see 
dramatic photographs in their figures 8 and 9. If, for a given forcing frequency, the 
local integration range from x-+ATS to z++A,, in the Fourier transform of A(x) 
yields a substantial contribution in the wavenumbers kTSr amplified in the Tollmien 
mechanism at that frequency, the amplifiable vorticity waves are among those 
seeded locally a t  the wall by ap/ax. 

2.2. Input into periodic vorticity fields 

It is useful to examine the general, complementary linearized differential equations 
for vorticity and pressure in quasi-parallel incompressible flows for clues on possible 
evolution of these waves in x and y :  

($+U&= + v u ” + v v y ,  

aV 
v=p = -2pu’- .  ax 

Here primes denote derivatives with respect to y of the local mean velocity profile 
U(y). The term +vU” in (2.4) constitutes a source of unsteady disturbance vorticity 
within the boundary layer - a rate of transfer from the steady vorticity of the mean 
flow. Similarly - 2pu’i3v/ax is a source of the inertial near-field pressure fluctuations 
characteristic of the low-speed TS waves. In  (2.4) the Laplacean of C, multiplied by 
v ,  represents the vorticity loss per unit time of an element of unit volume along its 
path by diffusive smoothing of the local highs and lows of the instantaneous 
(-distributions. These equations also apply locally in the appropriate long-wave limit 
to the acoustic sublayer and hence to its linear interaction with TS waves. 

Since av/ax = ikv in harmonically varying flows, both sources above are governed 
by the y-distribution of the normal velocity v in the waves. It is significant that the 
v-component in the acoustic sublayer and in any Stokes layer is of higher order. 
The growth of the TS waves must therefore entail a build-up of v from the wall. 
We recall that the no-slip conditions impose a slower, parabolic growth 
v = co k{+iy2 - (1 +i)y3/6S} near a flat wall (Lin 1955, p. 62). This follows from (2.2b), 
(2.3) and the continuity equation. 

An idea of the vorticity growth in x and y can be obtained by multiplying (2.4) 
by 5, averaging in time over one period and integrating from the wall to any desired 
level y : 
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We note that for spatially developing waves the averaging is simplified by using the 
expression Re { fg* exp i(krf- krg)  x} exp { - (k,+ kig) x}/2 for the time average of 
the product of two functions f(z, y) expi(kfx-mot) and g(z, y) expi(kgx-ut); here the 
asterisks indicate complex-conjugates. Thus F = 5, c$ exp ( - 2y/S) for the non- 
growing Stokes distribution of equation (2.3). The last term in (2.6) represents the 
source of p diffusing out of the wall in accordance with equation (2.1). Together with 
the preceding term, it gives the net diffusion rate into the slab of height y, which is 
of order g u y .  These last two expressions balance exactly the fourth term on the right 
and dominate the entrophy distribution F near the wall, as expected from the pure 
Stokes-layer limit behaviour. The effect of the finite wavelength is felt through the 
second and third terms on the right at  and beyond the order v k f c  y and v k t c  y 
respectively. The other source of F ,  the average rate of transfer from the mean 
vorticity - U’, constitutes the first term on the right. Since the lowest term in v is 
90’ out of phase with Q, 3 starts with y 3 g  k/6S and since U“ z - y2 in Blasius layers, 
this transfer rate is actually negative near the wall and of order kgys/S. (For fully 
developed TS waves, unpublished numerical solutions of F. R. Hama and H. Fasel 
indicate that XU” opposes growth of up to the critical layer where changes phase 
by 71: across the locally dominant viscous layer of Tollmien.) When this field source 
of contributes to the receptivity, its effects should be traceable in the developing 
response field at heights y not yet influenced by the diffusive contribution from the 
wall sources. Early growth of sTs beyond the critical layer was in fact observed in 
unpublished numerical experiments by H. Fasel. 

2.3. Constituents of forced solutions in unstable flows 

The behaviour of p near a flat wall, sketched in the preceding paragraph, rests only 
on the basic vorticity equation (2.4) and the periodicity of the solution. Whether a 
solution is forced or represents a homogeneous response, it will have the limiting 
Stokes vorticity distribution (2.3) for small y-values. A t  this stage it is desirable to 
define what is meant by forced solutions and homogeneous (or free) response of our 
linear system. The terminology of forced solutions in the presence of unstable 
eigensolutions has not been settled. In the one explicitly solved, highly idealized case 
of an inviscid, very localized acoustic receptivity at  low speeds, Bechert (1982) finds 
his spatially growing solution in each region composed of an ‘ inhomogeneous part ’, 
plus a decaying and a growing eigenfunction. We expect a superposition of more 
complex counterparts of the three types of solutions of Bechert : (a)  the inhomogeneous 
(or particular, or forcing) solution (or field), uf, vf ,  Q, p,, imposed externally by 
non-homogeneous boundary conditions on our domain ; (b) a collection of growing TS 
solutions, uTs, vTs, CTs, p,,, at the forcing frequency, which may not be in phase as 
they spread out from different regions along the wall; (c) the damped part of the 
homogeneous solution u,, vd, c,, p, (also at the driving frequency), which in principle 
should be constructable from the contributions of the higher damped TS modes 
and of the continuous spectrum as discussed by Salwen & Grosch (1981). We prefer 
the description ‘response’ to ‘forced’ for the additive solutions (b) and (c) of the 
homogeneous system. Amplified homogeneous response or free response seem both 
a descriptive and unambiguous characterization of the pure TS eigenfunctions 
measured by Schubauer & Skramstad sufficiently far downstream from their forcing 
vibrating ribbon. 

For specific flow conditions - a given driving frequency f and a local displacement 
thickness 6* - the eigenfunctions in ( b )  and (c) should be fixed by the dimensionless 
frequency F = 2nfv/CF and the Reynolds number U6*/v.  In principle then, for a 
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given F and Rea, only the amplitudes and phases of these homogeneous solutions are 
unknown a priori. These should be determinable from the requirement that the total 
solution satisfies all the appropriate boundary conditions. Since an unsteady pressure 
gradient is a key feature of the forcing field and an unsteady vorticity the essential 
ingredient of the expected TS response, one would look to the no-slip wall constraint 
between these two fields, (2.1), to provide the link that should determine the 
amplitudes and phases of the eigenfunctions in (b) and (c ) ,  i.e. the complete 
receptivity characteristics. We believe that receptivity is most efficient when the 
amplitude A(z )  of the forcing pressure gradient has lengthscales on the order of A,,, 
a belief shared by Ch. K. W. Tam in his unpublished (1979) critique of the problem 
of receptivity to sound, and others. 

2.4. Evidence for positive receptivity 
A general proof of the preceding conjectures is likely to remain unavailable for some 
time. Here we shall attempt to make the conjecture plausible (a) by examining for 
- constant S the general average inputs at the wall, (2/p)(ap/a2)5, and in the field, 
vCU",  in equation (2.6) and (b) by invoking the results of an unpublished, specially 
designed numerical experiment by Hermann F. Fasel. Most importantly, the results 
of previous reliable experiments, as well as our own, should be consistent with the 
conjectures, including the A ( z )  scaling requirement. Thus, in our experiments, even 
though the forcing pressure field is three-dimensional, the measured profiles 
u'(y) exp i&y) should be expected to be Stokes-like far upstream, corresponding to 
uf.  The u'(y) profiles should acquire an increasing ukax at higher y-locations as 
substantial u,, contributions appear when Reat exceeds the critical value for the 
given F. In  experiments at  substantially subcritical conditions, the full signal should 
consist of uf and ud, and depart little from the Stokes behaviour to be consistent with 
the preceding conjectures. Finally, whenever the TS contribution grows enough to 
become dominant near the wall, the phase velocity a$/ax of the total signal a t  its 
maximum near the wall should approach the TS phase speed for the given F and Rea, ; 
for small variation of the slope about kTSr, see (3.1b) and the discussion in 54.3. 
Unfortunately, none of the earlier experiments, including those of Aizin 6 Polyakov 
(1979), documented the crucial development of the u'(y) and $(y) profiles. The best 
results, such as those in figure 1, give only the x-variation at  an unspecified height 
(possibly that for uk,,). These results are consistent with the superposition of fields 
(a) ,  (b) and ( c ) ;  furthermore, 2-scales on the order of TS scales are provided by the 
leading and trailing edges of the protruding Mylar tape. 

Each of the sets of fields, such as CTs, vTS, etc., satisfies separately the basic 
vorticity equation (2.4). Equation (2.4) being linear and homogeneous, can also be 
written for the sum of the f- and TS-fields. Multiply this equation by CTs, average 
over one period and consider the region above the Stokes layer where Cf vanishes: 
the result - is an expression for the local growth o f z  which contains a non-homogeneous 
term vf  CTs U" besides all the terms pertaining to the TS field alone. While the 
differential equation is not very useful by itself, it  shows that physically there should 
be a direct non-homogeneous, non-diffusive input from the forcing field to the TS 
vorticity field throughout the boundary layer. (The coupling in the linear homogen- 
eous equations (2.4) takes place through the boundary conditions alone; coupling in 
the nonlinear averaged total enstrophy equation (2.6) occurs throughout - the region, 
clarifying the physical mechanisms at  work.) If the average in x of vf CTs U" does not 
vanish, the direct forced conversion of mean vorticity to unsteady vorticity vf U" 
in conjunction with even weaker pre-existent TS vorticity, CTS, does generate an 
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increment ACTS beyond the self-induced growth rate - kTsi. Similarly the average 
cross-product CTS(ap/ax), at the wall could, under certain conditions, contribute to 
local ACTS above the self-exciting TS growth. 

Let us first consider the conditions that would allow the wall input to contribute 
non-vanishing forced increments to the growth of (52Ts. For a flat plate and the 
long-wave limit of the problem, the outer forcing field of Goldstein (1983) and 
Murdock (1980) is (l/p)ap/ax = -&/at = (A/p)  exp (- id) .  The wall input rate in 
(2.6) then becomes 

(2A/p)ICTS(O)I exp i{$TS(o)} exp i(kTS x-wot )  exp (-iwt) 

= (2A/p)lCTS(o)I exp ( -  kTSi cos ikTSr z+$TS(o)}. (2*7) 

For neutral conditions the wall input (2.7) is purely oscillatory and averages out to 
zero over a TS wavelength. Otherwise this local average is oscillatory and of first 
order in the small ratio r = kTsi/kT,,, namely 

21CTS(o)I11/pap/axl, exp (-kTSix) Sin{kTs,x+$TS(o)}r+o(r2). 

A shift of the origin of x to the nearest point where the net argument of CTs(0) 
vanishes, $TS(0)+ kTSrAx = 0, renders the average of second order in r and still 
oscillatory. Thus this rate is negligible compared to the TS self-exciting feedback rate 
at  the wall : 

( 1 / 4  J"" (2/P)(CaP/wOdx 
x -:A 

= 1C(O)1 I(l/P) aP/az10 cOs{$&o)-$pz(o)} exp (-2kTSix). (2-8) 

Consider now a forcing pressure gradient with an amplitude A ( z )  varying along 
the flat wall, the case corresponding more closely to our local sound source located 
above the boundary layer. Let the Fourier transform of A(%) be A,(k), so that 
(27c)iAF(k) = J:: A(x)  exp (ikx) dx. The averaging is now modified; if A(x)  makes a 
non-zero contribution &iF(kTS) at the TS wavenumber between x - ~ A  and x+@, 
there arises a net local input rate from the forcing field to the TS field per cycle, 
per unit area, of magnitude 

The increment AAF(kTS) in effect reflects the commensurability of A,, and the local 
characteristic length introduced by the amplitude variation A ( x )  of the forcing 
unsteady pressure gradient. Using properties of Fourier transform, AA,(k,,) can be 
expressed as exp ( - kTSi x) AF(kTsr) Ak/kTS,, where Ak represents a generalized 
bandwidth. In either case, evaluations of (2.9) in specific cases have to be numerical. 

growth rate is similarly non-zero when the 
harmonic pressure gradient varies as A ( z ) .  First, and most importantly, the A ( z ) -  
dependence builds up the v, motion very rapidly in proportion to and on the scales 
of A'(x).  As a consequence of the continuity equation the amplitude of vf is 
proportional to A'@) + ik, A ( x )  - say &(y){A'(z) + ik, A @ ) } .  Because the A'(%)-term 
is in phase with 6, the 6 XU" dy contribution in (2.6) now commences with the fifth 
power of y at  the wall. For the long-wavelength limit, only the A'(z)-term is present 
and upon integration over A,, yields proportionality to - ikTs AAF(kTs) in the form : 

The contribution of u" to the 

vf CTS u" ds dy = & IOU Im {kTS AAF(kTfj) &S(y) v,*(y)} u"(y) dy. 

(2.10) 
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The alternative expression for (2.10) is obtained by replacing AAF(kTs) inside the Im 
operator by exp ( -  kTs,x) AF(kTsr) Ak/kT,. Other comments on (2.9) remain valid 
here. Conditions (2.9) and (2.10) refer to local conditions within +ATS from x. At more 
distant x-locations new contributions may not be in phase with the initial ones and 
partial cancellations of response may take place. Such negative contributions will be 
evident in our experimental cases S, U and N, but not in case U,. 

The preceding arguments can be generalized to forcing excitations by pressure 
fields moving at 'convective' speeds below or at  the free-stream speed, such as 
those due to unstable wake streets indicated schematically in figure 3. Let the 
wake frequency be w ,  the wavenumber k, and the amplitude A,(x) .  When A is 
constant, cos{kTSrx+$TS(0)} in (2.7) is replaced by cos {kTsr - k,) x+$TS(O)}. All 
the comments following (2.7) can be paraphrased with A,, replaced by 
ATSw = 2.rc/(kTs,- kwr). Similarly in the case of variable amplitude A,(z),  the 

for the local contribution to the spatial growth of by the forcing effect of the 
propagating pressure field of the unstable wake. 

Evidently the difference in propagation speeds does not matter, as long as the 
variable amplitude can supply characteristic wavenumbers commensurate with 
the difference in wavenumbers kTSr- kwr. This should not be surprising since in the 
long-wavelength limit k,+O of the fixed exciting source there was also a mismatch 
in propagation speeds. Our fourth experimental unstable case U,, described in $3, 
deals with a combination of the fixed source and moving-wake sources, where these 
concepts are applicable. 

Besides the experimental results of $4, the most direct evidence for the mechanisms 
discussed in $2 is found in the unpublished numerical experiment of Hermann Fasel. 
Space does not permit detailed description nor inclusion of figures of the evolving 
total fields u, v, and 6 obtained by Fasel's (1976) techniques. Suffice it to say that 
the ability to start and stop the forcing field instantly brought out clearly (i) early 
TS vorticity growth diffusing from the wall sources, and (ii) early growth of cTs at 
heights y which could not have been due to diffusion from the wall. The features of 
effect (ii) are completely consistent with the input vfcTs U" described in $2.2. 

expression (kTsr- kwr) AA,F(kTs- k,) takes the place Of kTs,AAF(kTs) in (2.9) 

- 

3. Experimental considerations 
We decided to maximize the localization of the pressure field by bringing the 

successful movable, Pitot-like three-dimensional sources of Morkovin & Paranjape 
(1971) into the free stream close to the boundary layer formed on the back wall of 
the IIT Visualization Facility. Consequently, the controlled forcing fields were very 
low in intensity and decayed to ineffectual levels within a fraction of the acoustic 
wavelength Aac, within or outside of the TS-amplifying domain. As a result, the 
effective acoustic field of the primary source was dominated by the near field, i.e. i t  
was given to a good first approximation by a fixed incompressible harmonic source 
in a fluid moving with U ,  and its reflection from the tunnel walls. The low intensity 
of the field avoided completely pitfall (iv) described in $ 1  ; all the experiments were 
run below any onset of nonlinearity in the overall forcing and response system. The 
linearity of the response was checked repeatedly. The pressure field was so low that we 
could only tell whether the source was on or off by monitoring the excitation and 
response voltages. In other tests of receptivity, the experimenters had to contend 
with fatigue caused by the exposure to high-level sound. 

The rapidly decaying forcing field also precluded build-up of acoustical and 
mechanical resonances. A subsequent experiment by Bar Sever (1984) in which the 
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pressure field was imposed directly by a loudspeaker mounted at the upstream end 
of the front wall of the same test section demonstrated a posteriori the advantage 
of the adopted local sources. Bar Sever’s limited objective of stimulated growth of 
TS waves was achieved, but detail quantitative interpretation was marred by 
non-monotonicity of the response with respect to the excitation frequency. Complex 
discrete resonances of the acoustic and overall mechanical system (including probe 
support) were superposed upon the desired direct TS-wave response to the speaker 
source field. A similar non-monotonic peaky TS response in the receptivity experi- 
ments of Spangler & Wells (1968) was criticized in the aforementioned Soviet 
surveys by Ginevskii et al. (1978) and Kachanov et al. (1982). 

The test boundary layer was formed on the back wall of the IIT open-throat 
Visualization Facility, figure 2, downstream of a two-dimensional 18 : 1 contraction 
from a 73.7 cm x 274 cm rectangular settling chamber. This configuration avoided 
therefore pitfall (iii) of 5 1  - the singular fields associated with the vibrations of the 
leading edge and with the sharp local diffraction fields around the edge due to 
imperfect alignment of exciting sound fields. The measured boundary-layer profiles 
corresponded very nearly to flat-plate Blasius solutions with displacement thicknesses 
from 2 to 2.5 mm and with effective leading-edge locations in the contraction of the 
tunnel. Since the relevant Tollmien critical heights ranged from 1.3 to 1.6 mm, 
hot-wire traverses from about 0.3 mm outward provided the required type of local 
information on u’(y) and $(y) mentioned under (ii) in $1. The crucial vorticity 
information, however, was unobtainable and can only be inferred indirectly in special 
regions. Neither could hot-wire anemometry at  the low excitations in our relatively 
thin layers supply sufficiently accurate information on the w-fluctuation component 
which plays the important role outlined in $2.4. 

The mean and fluctuation velocities were measured by standard linearized hot-wire 
anemometry. The probe, made of tungsten wire, was 4.5 pm in diameter and 1.5 mm 
in sensitive length. The r.m.s. level of the u-fluctuation, u‘, in the test section did 
not exceed 0.1 yo of free-stream velocity U,, with about 90 Yo of the signal registered 
below 25 Hz. Thus the relative spectral disturbance level was small, below 0.003 %, 
in the 30-80 Hz range of interest. Spectral measurements of fluctuating static 
pressure were nearly proportional to hot-wire sensed u’ according to the linearized 
Bernoulli equation; this indicates that the bulk of the disturbances consisted of 
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large-scale, low-frequency (near-field) pressure fluctuations, rather than of finer-scale 
convected turbulent vortical fluctuations. Dominance of u'/ U, by low-frequency 
pressure fluctuations seems to be common in open-throat wind tunnels with quiet 
driving fans. The free-stream spectra decreased steadily from the lowest registered 
frequency but did have small relative maxima near 11 Hz and 22 Hz, corresponding 
to the lengthwise and crosswise acoustic resonances of the laboratory room. In the 
forcing experiments, the u-fluctuation at  the excited frequencies was always band-pass 
filtered from the total to obtain good accuracy in the measurement. The y-distribu- 
tions of the mean velocity U(y), the r.m.s. u-fluctuation u'(y) and the phase $(y) were 
all recorded on an X-Y recorder simultaneously during each traverse. The phase was 
measured by a phase meter. The full and filtered signals were monitored on an 
oscilloscope at the beginning and end of a traverse or more often. 

As mentioned in the Introduction, the scheme of localizing the oscillating pressure 
field through a movable local source introduced one serious complication into the 
experimental set-up. The piping that carried the fluctuations from the speaker 
diaphragm to the Pitot-static opening in the free stream generated wakes in the test 
section. These wakes also responded to the excitation field and in turn produced 
secondary unsteady travelling pressure sources a t  the excitation frequency. (In the 
Morkovin-Paranjape 1971 jet experiments the local forcing source was located 
outside the flow region and therefore caused no wakes and associated complications.) 
Starting with the 1971 Pitot-like source configuration, long months of experimenta- 
tion with different support systems and with different partial shielding plates led us 
to the configuration sketched to scale in figure 3. Each of the tested configurations 
made us more appreciative of the complexities of acoustic forcing of wakes and their 
pressure interactions. 

The sound was ducted from a woofer-type loudspeaker (of about 30cm in 
diameter) through a multiply bent pipe with outer diameter of 0.6 cm to a 
Pitot-static-like elliptic head, with its tip positioned at station x = 0. Two holes of 
diameter of 0.2 cm, with centres lined up parallel to the wall, constituted the actual 
source geometry. They were located 28 mm downstream from the elliptic tip and 
76mm upstream of the 10" bend of the ducting, which commenced at station 
104 mm. The 1 mm thick wake-shielding plate with rounded edges was positioned 
10 mm (toward the wall) from the centres of the sound holes, with its leading edge 
2.5 mm downstream of the centres. The spanwise width of the plate was of 37 mm 
between x = 30.5 and 94.5 and of 109 mm between x = 94.5 and 131.5. This was the 
standard configuration which decreased substantially the influence of the wakes and 
of the convected disturbed fluid ejected out of the holes over half of each period. For 
the most disturbed condition in figure 6 the shielding plate was absent; for the 
condition in figure 10 the plate was made to shield the direct source by moving its 
leading edge to x = -53 and extending its length to x = 48. 

Comparison between responses at  a fixed velocity U,  and frequency f in shielded 
and unshielded configurations provided an appreciation of the unwanted wake 
effects. Contrasts between responses for identical source-and-shielding geometry at  
different speeds U, and frequencies f, i.e. for different conditions of TS growth, yield 
insight into the basic characteristics of boundary-layer receptivity in 0 4. Three 
conditions were chosen for the source tests with the 180" phase change under the 
source: the very stable case S, with forcing at 50 Hz at U,  = 3.3 m/s; the 'just 
stable' case N, with forcing at 30 Hz at the same speed of 3.3 m/s; and the unstable 
case U at U, = 7.3 m/s with forcing at the same frequency of 30 Hz. The three cases 
S, N and U test the relative development, or lack of it, of the three constituent fields 



232 M .  Nishioka and M .  V .  Morkovin 

75.5 
I 
I 
I 
I 
I 
I F 
I 

I 
I 

42 sources 

x (mm) 
FIQURE 3. Primary configuration (to scale) of acoustic Pitot-static source and the shield plate 

in the excitation of the sidewall boundary layer. Dimensions in mm. 

( ) f ,  ( )d, and ( )TS discussed in $2.3. A fourth case U,, for the unstable 7.3 m/s 
condition, with the shield plate moved 83.5mm upstream to block the forcing 
excitation upstream of the source, was chosen to document TS-wave growth without 
the 180’ phase change in uf under the source. Except for the presence of moving 
secondary sources in the wake, this case corresponds to the more commonly occurring 
acoustic receptivity configurations, such as that of Kegelman (1982). 

The forcing field for the cases S, N, and U is defined by measurements of u’(x, y) 
and $(z, y) along the contour AA’B’C’D’D and for case U, along CC’D’E’E in figure 
3. At the front boundaries AA’ and CC’ the input profiles are found to be essentially 
Stokes-like, as (2 .2b )  suggests for the upstream end of the interaction region. A t  
the downstream boundaries, the profiles generally include uh and especially ukS 
components ; however, an appropriate u; Stokes profile can be constructed approxi- 
mately from u;(D’), as the stable case S confirms. If the fields were two-dimensional, 
the above specifications would be sufficient in principle to determine the inviscid 
forcing field and its viscous sublayers at A and D.  The three-dimensionality of our 
primary forcing source helped to reduce considerably the size of the region of 
significant receptivity, but it did complicate the empirical definition of the forcing 
field. Since the main conceptual issue here is the effect on receptivity of the x-variation 
in the amplitude A(x)  of the unsteady pressure gradient, none of our probing in the 
z-direction is reported. The A(x)  variation is provided adequately by traverses along 
A’B’C’D’E’ . 
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FIQURE 4. Vectorial representation (3.1) of total measured signal u’ composed of a stationary 
forcing field u’(x, y, t) = u; exp ( -iwt) and a pure TS response uT&, y, t )  = u.& exp i(kTs x- q5TSO) x 
exp (iwt), where ui, uiS and q5TS = kTsx-@Ts,, are functions of x and y. 

The interpretation of the empirical amplitude development u’(z, y )  and phase 
variations $ ( x , y )  of the total signal must rest on the conceptual model of its 
components, say that described in $2.3. The approach can be illustrated for the 
simpler case of local dominance by a stationary forcing field uf = ui exp ( -iiot) and 
by a TS response field GS exp (i$Ts) exp (- id) .  Here $ T s ( ~ ,  y )  is the relative phase 
of the evolving TS response with respect to the phase of up as depicted in the complex 
plane of figure 4. Only beyond the region of genesis of the TS response can the phase 
$TS be related to the phase development of the fundamental normal mode: 
$Ts(x, y )  = kTSr x+$TSo. Hot-wire and phase-meter measurements provide u’(x, y )  
and $(x, y )  of the total field, which in accordance with figure 4, is expressible as 

u’ exp (i$) = u;(x, y )  +u&(x, y )  exp (i$Tfj), ( 3 . 1 ~ )  

sin $TS 

P + cos $TS ’ 
tan$ = (3.lb) 

( 3 . 1 ~ )  

Here p ( x , y )  is the generally variable relative strength of the forcing amplitude 
uf to the local response amplitude uks at any point in the field. Past the region 
of genesis, the expression for the normal-mode amplitude : u&(x, y )  = u~,(x,, y )  x 
exp { - kTsi(x-xo)} should be applicable and incorporated into (3.1), in particular in 
the p-terms. From this expression and (3.1 c), i t  is clear that in the region of pure 
self-excited growth the measured u’ has a distorted undulation with a wavelength 
of A,, and a relative amplitude of p superposed on the normal-mode growth 
exp { - kTSi(x - x,,)}. Asp  diminishes to zero, the undulation in measured u’ disappears. 
It is possible to generalize (3.1) to the case of forcing by a non-stationary wake 
pressure field characterized by up = u&, y) exp i$w, where $w is likely to vary as 
kwrx-$wo. In (3.lb, c) we simply replace $ by $-$w and $TS by $TS-$w. The 
resulting undulation in measured u’ should undergo an undulation of wavelength 
A = 2x/(kTsr - kwr) beyond the region of active local stimulation of TS waves. 

The representation (3.1) provides ready interpretation of figure 1, due to Aizin & 
Polyakov (1979), where the TS growth is documented over many TS wavelengths 
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relative to a nearly constant-amplitude u;. The minima and maxima in figure 1 
correspond to segments OM and OM‘ in figure 4. In  contrast to figure 1,  our 
receptivity study (except for the smoke-wire visualization of figure 5 )  is concerned 
with the region of genesis of uTs; in figure 1 such a region is upstream of x = 0.59, 
where Aizin & Polyakov give no coherent information. I n  this region the superposition 
should include the damped response ua and the increments in the TS wave AuTs due 
to local strengthening through the input from the non-homogeneous solution. 

4. Experimental results and discussion 
4.1. The smoke-wire evidence 

Figure 5 presents a smoke-wire visualization of the spatial growth of a three- 
dimensional TS-wave formation generated by our early unshielded Pitot-like source 
at 30Hz located just outside of the boundary layer in a free stream with 
U, = 5.5 m/s at x = 0.2 em, y = 0.8 ern and z = 0. The three-dimensional excitation 
generates not only c-vorticity through oscillatory t)p/ax in accordance with (2.1), but 
also streamwise vorticity 6 through oscillatory ap/az. I n  figure 5 the smoke 
accumulation in Kelvin’s cat’s eyes is observed over about one-third of the TS 
wavelength of approximately 7.5 em. The propagation speed Af at 30 Hz is approxi- 
mately 0.075 m x 30(s)-’ = 2.25 m/s = 0.41 U,. The spurious incremental effect of 
the smoke-wire wake described by Thomas (1984) is completed upstream of the 
source so that the growth in intensity and spanwise extent of the wave packet seen 
in figure 5 should represent the true TS response to  the forcing fields. Here these fields 
include unknown secondary pressure sources from the stimulated modulated wakes 
that were generated by cylindrical piping centred on x = 0.2 em (diameter of 
6.35 mm for 8.9 < y < 15.2 em pared to  a diameter of 1.59 mm for 0.8 < y < 7.6 cm. 
The forcing fields and the decaying part of the homogeneous response, of course, do 
not contribute directly to the discernible accumulation of the smoke in figure 5.  

From hot-wire measurements of the boundary-layer profiles for 20 < z < 40 em a t  
U, = 7.3 m/s, a displacement thickness S* of approximately 2.64 mm was inferred 
for the conditions in mid-figure 5.  The Reynolds number based on this displacement 
thickness is 970. At this Reynolds number a two-dimensional TS wave at the given 
dimensionless frequency US*/ U,  = 0.091 travels at 0.352 U ,  and has a wavelength of 
64 mm according to charts of Wazzan, Okamura & Smith (1969). The propagation 
speed and wavelength of the wave in figure 5 are therefore approximately 16 yo and 
17 % larger than the two-dimensional TS wave at the driving frequency. Clearly, TS 
waves of different obliquities, corresponding to the same fixed frequency of 30 Hz, 
are superposed on the two-dimensional free response. According to  charts for oblique 
waves of Gaster (1977), obliquity increases streamwise propagation speed and 
wavelength, in agreement with the results of figure 5.  

4.2. The forcingJields and the stable case S 
The forcing non-homogeneity, i.e. experimental variations u;(x, 11 mm) and 
$,(x, 11 mm) beyond the boundary layer S of approximately 7 mm for the stable and 
unstable cases S and U, are presented in figure 6 for the interaction region associated 
primarily with the source forcing and the shield geometry of figure 3. Measured 
representative u’( y) and $(y) profiles, which combine the forcing and response fields, 
are shown in figure 7 for case S. Comparable profiles for case U are displayed in figures 
8(a-d). Stokes-like initial profiles at z = - 10 in figures 7 ( a )  (i), (b )  (i) for case S, and 
a t  x = -30 in figures 8(a ,  d )  for case U complete the definition of the forcing 
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FIGURE 5. Smoke-wire visualization of the TS formation and growth excited by a shieldless 
Pitot-like source at 30 Hz located at x = 0.2 cm, y = 0.8 cm, z = 0 in a 5.5 m/s stream. 
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FIGURE 6. Measured centreplane behaviour of the forcing field, ,u;(x, 11 mm) and 11 mm) for 
the stable case S: 50 Hz, 3.3 m/s; and the unstable case U :  30 Hz, 7.3 m/s, for source position 
x = 28 mm, y = 42 mm = 66 and shield configuration of figure 3; also for unstable case with shield 
plate removed. The u'/Ue scales in figures 6-10 are arbitrary; linearity was verified for each 
experiment. 
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FIGURE 7. Development in 5 (in mm) of y-profiles of (a) total signals u' and (b )  q5 for the stable 
case S :  F = 4.2 x 6* = 2.5 mm, Re,, = 550, theoretical Stokes overshoot yst = 0.74 mm. 

functions on segments AA' of figure 3, as discussed at the end of $3. Figures 6 and 
7 of Loehrke et al. (1975) give yst, the y-position of the maximum in the Stokes layer 
superposed on a Blasius layer, approximately a t  2.4s a t  a lag of approximately 50" 
from the wall limit, i.e. 5" from uf at 65; for cases S and U the expected locations 
of the overshoot are therefore 0.74 mm and 0.96 mm respectively. Note the differences 
in the range of the smoke-wire figure 5 ,  measured in cm, and the range in figures 6 
and 3, measured in mm. I n  contrast to figure 5, we are now focusing on the early 
and main region of the forcing, not previously reported in research literature. 

The forcing field ufs(x) in the stable case in figure 6 exhibits near symmetry with 
respect to x = 22 rather than x = 28, the abscissa of the source at height y = 42 mm. 
The 180" phase change at y = 11 takes place between stations 6 and 40, primarily 
near 22. (Strictly speaking, symmetry in u' and a R change in 4 would make the 
forcing field antisymmetric.) Since uiS continued to decrease to x = 155 at essentially 
constant q+(z), pressure radiation from the unstable wakes was effectively postponed 
beyond the x-range of our study a t  this low velocity of 3.3 m/s. The slight asymmetry 
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in u&(x) therefore must stem from some combination of (a)  asymmetry due to the 
shielding plate, (b) differences between the probably symmetric suction stage and 
the asymmetric ejection stage of the pumping cycle a t  the two orifices constituting the 
physical pressure source, and (c) the inherent field asymmetry of a fixed ideal source 
in a moving fluid. The slightly decreased phase lag q5ps for z > 40 points to the 
distorted fields around the shielding plate as the major contributor to the asymmetry 
in the case S. 

In the unstable case U at 7.3 m/s the additional contribution due to the pressure 
fields from the excited wakes influences the forcing field at y = 11 mm. This is 
indicated by the changes in the slope of +,&) for x > 30 and especially for x > 70; 
here, outside the boundary layer, (3.1 b) is applicable with the subscript w for wake 
substituted for the subscript TS. With the shield removed, the wake contribution 
evidently grows further as can be judged from the third set of curves in figure 6. It 
is especially significant that the two u;,(x) variations coincide, within experimental 
error, upstream of x = 12. Clearly the wake and shield effects do not reach there, and 
the early variation well past the first maximum near x = 2 mm must characterize the 
fixed primary-excitation source alone. As the additional wake sources are superposed 
the asymmetry of uiu(x) with respect to the minimum increases and with i t  the value 
of ukin itself. 

We note that the linearity of the responses allows us to change the ordinate of any 
u‘ variation in x or y by a constant factor for the purposes of comparison, say in figure 
6. Thus the forcing variations A ( z )  in the shielded S and U cases upstream of x = 20 
are seen to be little affected by the changes in frequency from 50 to 30 Hz and in 
U,  from 3.3 to 7.3 m/s. In this region, then, we can expect the receptivity 
developments due to the forcing-amplitude variations A ( x )  associated with a 
three-dimensional fixed source to be rather general. In the following region BB’C’C 
of figure 3, we can look for the major effects on uu of the early antisymmetric part 
of A ( x ) ,  i.e. the negative interference effect according to (2.9). 

The causes of the u;,(x, 11 mm) variations past DD’ are unclear but most likely 
correspond to secondary forcing sources in the wakes which are difficult to reproduce. 
Thus u&x, 11 mm) at  x = 90, 100, 120 and 140 in figure 6 marked by x symbols 
were measured for the nominally identical conditions in an experiment four months 
before the more detailed U-case results of figure 8. Analysis of profiles for x > 90 
points to non-reproducibility of the wake-induced pressures as the cause. Had we not 
monitored the forcing function u;(x, 11 mm), the effect would have remained 
mysterious, as do many phenomena reported in the literature on acoustic receptivity. 
A detailed discussion of the behaviour of the fields past x > 90 in terms of (3.1) is 
available from the second author. 

Theoretically, a two-dimensional TS wave at ReU8. of 1120 corresponding to 
f = 30 Hz and €18 = 2.3 mm near the source, would have a TS wavelength A,,, of 
about 78mm and a propagation speed cru of O.32Ue. Our documented region 
therefore covers about 1.5 TS wavelengths in the unstable configuration U, stopping 
just short of where figure 5 takes up with visual evidence. Extrapolation of charts 
for the stable case S with a,* = 2.5 mm near the source at 50 Hz and U,  of 3.3 m/s, 
yields a two-dimensional wavelength A,,, of 30 mm and propagation speed of crs of 
0.45Ue at ReS8. of 550. The just-stable case N differs from case S only in the forcing 
frequency f = 30 Hz, which lengthens the theoretical two-dimensional response 
wavelength to 46 mm and slows down the propagation speed to O.40Ue. 

The striking common feature of the u; profiles in figures 7(a)(i)  and (ii) is thct 
overshoot at y near 0.7-0.8 mm followed by a fairly constant uk value up to 3 4  mm. 
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As already noted in connection with the initial profile at x = - 10, ySt of the overshoot 
at  50 Hz should occur near 2.45, i.e. near 0.74 mm; the asymptotic value is usually 
reached beyond 6S, i.e. past 1.9 mm. The phase advance from yst toward the wall 
is also evident, but more difficult to compare with the expected 50' value because 
of uncertainties in extrapolation and in smoothing of increased jitter near the wall. 
Thus, for the stable case, not only is the upstream inner profile Stokes-like, but so 
are the subsequent inner profiles responding to the changes in the driving amplitude 
and phase at  y = 11 mm shown in figure 6. (In seeking the link between the outer 
and inner profiles we should keep in mind that the hot-wire traverses describe fixed-x 
characteristics ; on physical grounds the usage of bipolar coordinates centred on the 
effective source and its reflection in y = 0 would be more appropriate.) For the fixed-2 
traverses in figures 7 (b ) ( i )  and (ii) the inner q&(y) profiles advanced in an orderly 
fashion as x increased : the apparent jump between x = 20 and 30 really corresponds 
to a smooth, continuous in-phase shift from 0 to 2n between x = 20 and 24. 
(Unfortunately the &(y) profile a t  x = 24 is missing, but the feature under discussion 
is well reproduced by &(y) at x = 24 in figure 8 d . )  

The real 180' shift, which corresponds to the change in direction of uf near the 
source, takes place in a nearly discontinuous manner in the outer profiles. A cross-plot 
of &(x, y) in figures 7 (b) (i) and (ii) against x near the wall - say at y = 1 mm - gives 
the false appearance of a wave propagating upstream whereas we know that the 
dominant oscillating field is stationary. This feature reflects primarily the basic 
$(x, yo) variation of the forcing source field, with its Stokes layer, as it is accom- 
modating to the phase change of n near the source. The exploration of the stable case 
S was intended to calibrate for us the essential behaviour of the dominant source 
component of the forcing field. In the U case we can think of the total u-field as 
incorporating the patterns of figure 7 as a base (augmented by the forcing wake 
component) on to which the continuously seeded and amplifying TS waves are 
grafted. 

4.3. The unstable case U 
The detail evolution of the above forcing field and the growing response is presented 
in figures 8(a-d). The inner phase profiles q5&) up to x = 30 in the upper part of 
figure 8 ( d )  give the impression that the initial behaviour is merely a slightly 
exaggerated version of the steady phase advance observed in figures 7 (b) (i) and (ii) 
for case S. However, figure 8(a)  shows that past x = 0 the Stokes' overshoot in the 
amplitude u' is overtaken by a broad and rapid u' growth in x with a maximum near 
y of 1.5 mm, i.e. beyond the ycr location of 1.3 mm. Since this extra growth is absent 
in figure 7 (a), there is little doubt that in the region AA'B'B this development must 
represent the non-homogeneous seeding and the free uTS response to the variable 
forcing amplitude A(x) in figure 6. According to the conceptualization described at 
the beginning of $1, we can expect that in principle an eigenfunction decomposition 
of the fluctuating field at an upstream xo (where the dimensionless rate d In A/d(x/hTs) 
becomes significant) would disclose non-vanishing strength of the fundamental mode 
component, U T ~ ( X ~ ) ;  upstream extrapolation of the u;(x, 11 mm) shapes in figure 6 
suggests -80 to -120 as suitable choices for xo. On the basis of our heuristic 
arguments in 52.4, local wall and mid-layer inhomogeneous inputs to the spatial 
growth of (f",s past x,, should take place in accordance with (2.9) and (2.10). In these 
equations the phase reference was normalized. When the phase reference is not 
adjustable a t  each step, the local input at x' and the resulting local increment A&~(x') 
are dependent on the pre-existent local phase and are therefore complex functions 
of x'. A ACTS increment at  any x' grows with the TS growth rate exp{ - kTsi(x-x')} 
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past x’ and the same should be true for the associated complex velocity-field 
increments AuTS. The superposition of the initial TS component growing from xo and 
the continuous forced increments with their subsequent TS growths yields 

UTS(X) = UTS(X~) eXp{ -kTsi(X-Xo)}+ AuTS(X’) eXp{ -kTsi(Z-X’)}dX’. (4.1) s,”. 
The uTS component (4.1) ultimately becomes measurable in the presence of the 
stronger uf field and noise. This emergence of uTs from the noise evidently occurs near 
x = 0, after continuous cumulation over a distance of positive A(x) and positive A’(x) 
forcing on the order of one A,, of 78 mm. This growth slows down beyond B where 
interfering inputs at  the wall commence as A ( z )  de facto changes sign. 

In the light of the preceding interpretation of developments up to x = 20 in figures 
8(a,  d )  the phase advance with x of the inner profiles for case S in figure 7 (b) (i) (which 
is slower than the TS influenced advance in the upper part of figure 8 d )  may be 
partially related to the ud and urS characteristics even though these components are 
damped. The non-homogeneous solution, i.e. the forcing field, even with its Stokes-like 
adjustment at the wall, is unlikely to satisfy all the boundary conditions by itself. 
But the major differences between figures 7 (a) (i) and (b) (i) and figures 8 (a, d) stem 
primarily from the change from negative to positive amplification rate, -kTsi. For 
negative - kT,i the conceptual equation (4.1) indicates that the ?+ss component must 
be very small, even though it may cause part of the phase change in figures 7 (b) (i) 
and (ii). 

As discussed in connection with figures 7(b)(i) and (ii), the phase shift between 
stations x = 20 and 24 in figure 8 (d) is really an in-phase shift, of reference, from zero 
to 2n, less a small continuous phase advance expected over the intervening distance 
of 4 mm. This phase advance in the inner layers of figure 8 (d) continues from x = 24 
to 30, as in figure 7 (b) (ii) but is then overtaken by a steadily increasing lag near the 
wall which is essentially absent in the S case. This change of trends takes place past 
B, in the region of interference of new dp/dx inputs with the accumulations from 
upstream and in the region of probable mild wake contributions to the forcing field. 
The relative strength of the latter is judged by the excess of the forcing function uiU 
over uiS along y = 11 mm and by the moderate slope of &, in figure 6 over the 
segment BC. The reversal and the monotonic development of the lag #u(y) from 
x = 30 to 54 in figure 8 (d) (absent in the stable case) must be related to the activated 
negative inputs in this region in the presence of TS amplification. The TS phase 
generally lags in the downstream direction whether the amplitude is increasing or 
decreasing. This view is corroborated by the corresponding inner monotonic decrease 
in u‘ in figure 8(b)  which appears to be disconnected from the forcing levels outside 
the boundary layer. The superposition of fields in (3.1) does not include the damped 
ud fields; nor can the phase #TS in (3.lb) be related to x without taking account of 
the effect of the non-homogeneous contributions under the integral of (4.1). Yet in 
the spirit of (3.1) we can conclude from figure 8 ( b )  that the inner-layer developments 
mirror mainly the behaviour of the strongest component, the still-evolving uTS field ; 
on the other hand, the outer-layer behaviour characterizes primarily the local 
adjustment to the locally stronger forcing field u;(x, 11 mm). 

Generally, measurements of u& of pure normal modes away from regions of forcing 
but in the presence of noise exhibit an inner u’ maximum, then a rather sharp 
minimum beyond 0.66 where q5TS changes rapidly by x ,  followed by a shallow outer 
maximum, which extends beyond the edge of the steady boundary layer. Theoretically 
the locations of these maxima and the minimum depend on the frequency and the 
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FIGURE 8. (a), ( b ) ,  (c) Development in x (in mm) of u'(y)  and (d )  of #(y) for the 
F = 0.53 x 6* = 2.3 mm, Re,. = 1120, Stokes overshoot yst = 0.96 mm; for 
waves A = 78 mm, c, = 0.32Ue. 

unstable case U :  
two-dimensional 

Reynolds number, see e.g. figure 2 of Hama, Williams & Fasel (1980). When the u; 
forcing field is superposed, the y-minimum in the total signal u'(y) is likely to 
degenerate to a local dip, in accordance with (3.1 c )  ; the associated 180° sharp change 
in $TS should be spread over a wider y-range. Both of these characteristics are 
observed in the region downstream of CC'. In figure 8 ( d ) ,  changes in total phase q5 
exceeding n take place over Ay of about 3.5 mm (i.e. 0.56) for 62 < x < 90. Also, all 
the profiles in figure 8(c) (except one of the profiles a t  x = 90) show at least a hint 
of a dip in u'(y) past the inner maximum. Furthermore, the smoothed average phase 
change for 1.2 < y < 3.6 and 54 < x < 90 in figure 8 ( d )  is approximately 4.4"/mm. 
The agreement of this aq5/ax average with the theoretical two-dimensional slope 
a$Ts/i3x = kTSr for 30 Hz, 4.6"/mm, may be partly coincidental. 
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FIGURE 9(a ) .  For caption see facing page. 

4.4. The slightly stable case N 
We recall the setting of the experiment : for the same source and shield geometry in 
figure 3 and the same mean velocity of 3.3 m/s and S* of2.5 mm, case N differs from 
case S only in the forcing frequency, 30 Hz versus 50 Hz. At Re8* of 550, the 
conditions correspond to  the two-dimensional TS characteristics : A,, x 46 mm, 
cr x 0.40Ue, and kTSi x 0.0006. This case, intermediate between cases S and U, was 
intended to test primarily the consistency with the trends and results already 
described. No features discordant with the concepts and response behaviour discussed 
in the preceding sections were observed. We shall therefore confine ourselves to 
illustrations of the more interesting facets of the increased but still damped response 
in regions AA'B'B and CC'D'D; see respectively figures 9(a) (i) and (ii) and 9 (b ) ( i )  
and (ii). 

Figures 9(a)(i)  and (ii) disclose how case N partakes in the early phase advance 
and amplitude build-up discussed in detail in connection with figures 8 (a ,  d ) .  All three 
cases start with the Stokes-like profiles a t  the upstream sections. The subsequent 
relative amplitude development by x = 20 between u; and u;V in figure 9 (a) (ii) and 
uk in figure 7(a)(i)  epitomizes the three responses U, N and S to the same initial 
stationary forcing field with positive A ( x )  variations of figure 6. The broad growth 
across the inner layer, noted and discussed a t  its first appearance at x = 0 in figure 
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FIGURE 9. Comparison between the developments in the unstable case U and the just-stable caae 
N :  (a) (i) and (a)(ii) in the initial region AA'B'B of growth, and (b)  (i) and (a) (ii) in the second region 
of growth CC'D'D. 

8 ( a )  for case U is certainly present at x = 20 for the case N. According to the 
conceptual equation (4. l), there can be net growth in x due to the local inhomogeneous 
increments Aum(d) even when the factor exp{ -kTSi(x-d)} is somewhat less than 
unity. When damping is too large, there are no local build-ups and the profiles up 
to y x 4 remain Stokes-like as in the uk behaviour in figures 7 (a) (i) and (ii). 

In the region of negative forcing interference BB'C'C, the N profiles subsided 
similarly to the U profiles in figure 8 ( b ) ,  but at lower levels. Interesting and 
contrasting behaviour took place in region CC'D'D ; it  is illustrated in figures 9 (b) (i) 
and (ii) with the U profiles for counterpoint. As the inhomogeneous contributions 
decreased past x = 60, u;Y profiles declined in unusual lumpy patterns associated with 
sharp changes in ag5N/ay. By x = 140 the profile declined further into an essentially 
low-level Stokes-like profile with a remaining local a$/ay change at  y = 5.8 mm. We 
have no substantiable explanation for this phase behaviour. Whatever the detail 
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FIGURE 10(a,b) .  For caption see facing page. 

causes, the main observation is that a slightly stable boundary layer can build up 
local fluctuation levels exceeding the excitation level. As the 2-variation A(z) of the 
causative unsteady pressure gradient subsides, so does the response level. 

4.5. The unstable case U, with in-phase forcingjield 

In its upstream position - 53 < x < 48, the shielding plate under the source blocked 
the n change near x = 22 in the forcing phase #(x) of figure 6 and generated the new 
forcing fields along y = 11 mm in figure lO(a). The corresponding total fields, &x, y) 
and u' = u; + u& + uks are presented in figures 10 ( b )  and 10 ( c )  respectively. Upstream 
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FIQURE 10. (a) Measured centreplane behaviour of the forcing field u;(z, 11 mm) and q5&, 11 mm) 
for the unstable case U, with trailing edge of shield plate at 2 = 48 mm; q5m measured phase at 
y-maxima of u'. ( b )  and (c) 2-development of u'(y) and +(y) for case U,. 

of the plate trailing edge at x = 48, the initial profiles such as that at x = 40 are again 
Stokes-like, in agreement with expectations and the other experiments. At x = 69 
unmistakable TS-like characteristics emerge as they did in u; at x = 0 in figure 
8 ( d ) .  The discussion of the latter and (4.1) apply here without modifications. Of 
importance is the fact that the TS-like development continues monotonically 
through the rest of the investigated range. The contrast between this monotonic 
growth and the reversal of the early trend experienced by u; in figure 8 ( b ) ,  
corresponding to region BB'C'C, substantiates our discussion of the role of the forcing 
amplitude gradient A(x) .  When the forcing 180' phase change is removed so is the 
negative interference and the associated ineffectiveness in TS-wave generation. 
(These findings have implications for optimal shaping of A(x) ,  should i t  be of interest 
in applications.) 

It would be desirable to relate the growth of the maxima u& to the sources of the 
pressure fluctuations. The steady rise of the composite forcing function u&, 1 1  mm) 
implies that (i) the wake contributions must grow rapidly enough in x to compensate 
for the decaying contribution of the fixed three-dimensional source at x = 28, y = 42, 
and (ii) increments Aum generated by the continued forcing are likely to strengthen 
the TS fluctuations throughout the region. The significance of observation (ii) 
becomes clearer when we compute the theoretical two-dimensional normal-mode 
growth from x = 60 to 160. Since the spatial amplification rate - k,,, a* for case u, 
is approximately 0.0028, the growth factor ~ ~ ~ ( 1 6 O ) / u ~ , ( 6 0 )  = exp ( -kTsi X )  over 
the 100 mm, i.e. 1.28hTS, is only 1.13. The experimental ratio u&(160)/u&(60) is 



246 M .  Nishioka and M .  V .  Morkovin 

approximately 16 and the associated exponential rate is 22.7 times the theoretical 
-kTsi! This comparison reveals the key receptivity role of the cumulating inhomo- 
geneous contributions in the integral of (4.1). The growth rates in the cumulative 
ranges of case u, corresponding to  figures 8(a, c)  also vastly exceed -kTsi. 
Furthermore, in the region of negative cumulation and rapid decay rates, in figure 
8 ( b ) ,  the normal-mode growth rate - kTSi &* = 0.0028 remains positive. 

In the conceptual equation (4.1), the terms uTs and Au,, are complex and 
functionally dependent on the forcing function A ( x )  and its derivative, as well as on 
the TS eigenvalues. Consequently, the slope i3q5Ts/i3x in a region of forced stimulation, 
AuTs =l= 0, may have little relation to kTsr, its value beyond the seeding region. It is 
therefore of interest t o  single out in this stimulation region the measured q5 for the 
total signal a t  y-locations where the uTs component is expected to be the largest, 
namely at the maxima u& in figure 10(b). These phases g5m(x) are shown as circles 
in figure 10(a); they were advanced by 120" so as to fit the figure. For purposes of 
comparison, the solid line through the leading point indicates the theoretical 
two-dimensional g5TS = kTSr x+ g5TS0. The practically constant rate of measured phase 
lag from 100 to  160 makes i t  tempting to  infer a wavelength, namely A, of 98 mm, 
and to attempt to relate i t  to the dominant forcing characteristics. The effort might 
be more justifiable if an asymptotic behaviour were extractable from the superposition 
equations (3.1). 

Whatever the interpretations of finer features of the data, one overall aspect of 
the information in figures lO(a-c) is worth stressing. A substantial part of the 
observed growth could not have occurred without wake contributions to the 
increments AuTS. I n  52.4 i t  was shown that the input equations (2.9) and (2.10) can 
be generalized to TS excitation by moving external pressure gradients. If the ' local ' 
Fourier transform, AA,,, ofthe amplitude of the gradients A,(x) ,  has a non-vanishing 
contribution at the relative wavenumber kTSr - k,,, x-averages of forced inputs into 
the growth of TS enstrophy do not vanish. While these assertions are not verified 
here quantitatively, effective generation of TS waves by moving wave sources was 
demonstrated in this experiment, albeit in the presence of a stationary pressure 
source. Sections 2.2 and 2.3 document, unambiguously for the region up to BB', that 
a stationary forcing field with variable A(x )  does generate TS waves. Now, in the 
region beyond the trailing edge of the shield plate, efficient TS generation, without 
reversal of growth rate, is observed in the presence of a stationary and a moving 
source field. Neither of these fields matches the propagation speed of the TS waves, 
a condition occasionally proposed as necessary for transfer of energy between linear 
waves. It is now apparent that  the matching of characteristic lengths is the correct 
condition; this can be effected through the x-variation of the forcing pressure 
gradient whether the source is moving or stationary. 

A h a 1  comment on the rapid growth of uTs in figure 10 ( b )  is in order. It has become 
customary to assume (a )  that  all the inhomogeneous receptivity seeding takes place 
upstream of branch I of the neutral curve, and ( b )  that  the seeded TS wave packets 
amplify with the normal-mode rate beyond the neutral curve. The present experiments 
and those of Aizin & Polyakov (1979) (illustrated here in figure 1 and discussed 
further in the Appendix) demonstrate beyond doubt that  growths far exceeding 
exp ( - kTsi x) can occur within the TS instability loop as a result of unsteady pressure 
gradients. Scattered partial evidence suggests that  growth rates exceeding the 
normal-mode rates also occur in receptivity to free-stream turbulence, Corke, Bar 
Sever & Morkovin (1986). Increased caution seems in order when using assumptions 
(a )  and ( b )  in predicting boundary-layer behaviour in sensitive design applications. 
Evidently a homogeneous solution with initial conditions at  branch I can be 
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overtaken by faster cumulative growth from local inhomogeneous sources beyond 
branch I, as symbolized by (4.1) with xo = xcr. 

In fact, the scheme for TS control of Liepmann, Brown & Nosenchuck (1982) by 
a periodically heated film at the wall operates on this principle. First the amplitude 
and phase of upstream-seeded TS waves, which grow ‘naturally’ in the boundary 
layer, are detected. Then forced wall vorticity waves are tailored by the hot film in 
such a way that the cumulative term in (4.1) has the same amplitude and opposite 
phase of the homogeneous solution from upstream. The local growth rate of the 
added TS component must of course substantially exceed the local rate - kTsi for 
the successful operation of the device. In receptivity to wall heating, the role of the 
crucial variable amplitude A(z )  of the unsteady pressure gradient is taken over by 
the amplitude A ( x )  of the periodic term - (l /p) (d,u/dT) (aT/ay) (aulay) at the wall, 
where p is the viscosity of the medium; in unsteady wall heating this term replaces 
the unsteady pressure gradient in the no-slip boundary condition (2.1) which 
determines the strength of the forced vorticity sources at the wall. Here the forcing 
field is dominated by the vorticity field at  the wall with negligible vf and p,, so that 
the inhomogeneous input vrCTs U“ in (2.6) and (2.10) is absent. (Strictly speaking, 
the system of differential equations should include the thermal field; if the average 
heating rate over the film is small, the changes in the mean velocity field should be 
of higher order and confined to the proximity of the film.) 

- 

5. Comparisons, comments and conclusions 
The detail discussion of the response fields in our four experiments in $4 uncovered 

no inconsistencies with the views on forced inputs developed in $$2.1-2.4. The 
response fields grow with A ( x )  and decrease when A ( x )  in effect changes sign as in 
region BB’C’C in figure 6, both at rates far exceeding - k,,,. Furthermore, there is 
inferential evidence of vorticity increments at the wall and of velocity increments 
Au,,(x, y) with a maximum beyond ycr.  Thus there is basic qualitative consistency. 
Inputs into d z / d x  are not directly measurable; therefore the relations (2.9) and 
(2.10) involving the local Fourier transform of A@) ,  AAF(kTs) are not verifiable as 
such. The heuristic arguments in $2, while quite general, cannot lead to an actual 
seeding density AuTs(x) that could be compared directly with the data. For that, a 
rigorous general solution of the full non-homogeneous problem is required. There 
seems to be no reason why, for a specific forcing field characterized by a particular 
A ( x ) ,  approaches like that illustrated by Reshotko (1984, pp. 4-5) or the Green 
function technique of Tam (1981) should not be successful. 

The details of the evolution of the vorticity field in Fasel’s (1976) numerical 
experiment gave further support to our view of the two inputs from the forcing 
non-homogeneous solution, especially of the role of the up component. But, to what 
extent is our viewpoint consistent with the receptivity experiments described in the 
book by Kachanov, Kozlov and Levchenko (KKL 1982) and in other Soviet 
publications? And to what extent do the views on receptivity of the Novosibirsk 
group conflict with the present experiments and interpretation ? These questions call 
first for a brief resume of the largely unavailable Soviet work on receptivity. 

5.1. Views of Soviet experimenters on receptivity to pressure oscillations 
and vibrations 

Selected outlines of the experience of the Novosibirsk group were presented in 
Kachanov, Kozlov & Levchenko (1978) (hereinafter KKL 1978), Kachanov et al. 
(1979), Dovgal et al. (1979), Polyakov (1979) and in KKL (1982). Of these, the first 
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three are now available in English, and a copy of at  least the first should be in the 
personal library of serious students of transition. Except for the book by Ginevskii 
et al. (1978) the other Soviet references discussed here deal with specific receptivity 
situations. 

Early Soviet views on acoustic excitation of instability and transition were blurred 
by some experiments at high decibel levels which included a number of nonlinear 
receptivity paths. When nonlinear processes in the forcing field (including the 
speaker!) are excluded, the Soviet consensus is that TS instability processes are at 
work in dominant receptivity modes and that these are governed by the linearized 
Navier-Stokes equations. To sort out the experimental evidence, KKL (1982, p. 10) 
classify the active receptivity paths as (i) continuous or distributed, and (ii) localized 
or concentrated. In  our terminology the localized paths comprise cases where the 
non-homogeneous contributions BUTS take place over a distance less than A,, long. 
KKL : ‘By distributed generation we understand continuous distributed TS sources, 
spread over several A,,’. Category (ii) by definition includes: (a)  the Aizin-Polyakov 
generation by irradiated roughness as in figure 1 ; (b) the TS generation by a vibrating 
ribbon inside of as well as in close proximity to a developed boundary layer; (c) the 
generation by vibrations of leading edges of two-dimensional bodies with radii of 
curvature rC one or more orders of magnitude smaller than ATS; (d) the generation 
by far-field or near-field pressure oscillations with non-vanishing transverse velocity 
components v near such leading edges; (e) the generation by sound issuing from a 
small hole or slit from the surface under the boundary layer; ( f )  the generation by 
the periodically heated wall film with I < A,, of Liepmann et al. (1982), etc. The first 
type of response of Polyakov et al. (1976) described in the Introduction would have 
to fall into the distributed category, and so would the axisymmetric sound-induced 
waves of Knapp & Roache (1968) over a smooth tangent ogive-cylinder body. The 
axisymmetric secant ogive body of Kegelman & Mueller (1986) probably falls into 
both classes, because there is a jump of 4.8’ at the juncture between the ogive and 
the cylindrical body. Figure 11 of Kegelman & Mueller shows extended mean 
pressure gradients, signifying extended variations A ( z )  of the forcing unsteady 
pressure gradient at 500-1000 Hz; also, according to a private communication from 
J. T. Kegelman, hot-wire traverses indicated the beginning of the superposition 
pattern upstream of the juncture. In  our experiments with the sound source at 
ys = 42 mm = 68, A ( z )  variations spread over 3ATs or more; the perturbation was 
compact enough to allow confident tracing of cause and effect and yet extended 
enough to exhibit negative interference in the cases where A(%) in effect changed sign. 
In Fmel’s (1976) numerical experiment, the forcing perturbation was prescribed over 
a length slightly less than ;AATS and falls therefore in the localized category (ii). 

After 1975 KKL, impressed by the strong localized effects at  the leading edge 
summarized below, looked almost exclusively to concentrated TS sources for 
explanation of receptivity experiments. In  the 1982 book they point out that ‘sharp 
changes in 5 of the disturbance amplitude excite in the boundary layer wave packets 
of diverse wavelengths, including those corresponding to TS waves ’. Without 
considering specifics of the non-homogeneous inputs they state that the ‘localized 
influences appear to represent greatly stronger TS excitation than distributed 
influences ’. No distributed sources were investigated in any detail. The experiment 
of blunt-nose effects by Dovgal & Kozlov (1981 a,  b) unfortunately did not document 
the forcing amplitude variation u;(x) outside the boundary layer. 
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5.2. The issue of the leading-edge effects 
In  face of general scepticism, KKL demonstrated to objective observers the nearly 
singular nature of TS formation associated with moderately sharp leading edges in 
classes (ii) ( c )  and (ii) ( d ) ,  KKL (1975) and (1978) respectively. The conclusion of the 
untranslated 1975 paper was startling : in experiments on receptivity over flat plates, 
TS waves are induced by the vibrations of the leading edge rather than by the sound 
interaction with the boundary layer. The conclusion is well documented for the KKL 
1 cm thick flat plate even in the presence of the relatively low dynamic pressure at 
the tunnel speed of 8.7 m/s. Is the conclusion equally valid for the sturdier, 2.5 cm 
plate of Polyakov et al. (1976) at 24 m/s and the viscoelastically damped 1.25 cm 
plate of Shapiro (1977) at 29 and 41 m/s? 

In the experiments of Polyakov et al. (1976) an effective TS-wave origin near the 
leading edge is contraindicated by the growth of the first type, commencing halfway 
through the TS amplification region; to be induced a t  the leading edge the growths 
would have to start close to Recr. As mentioned in $1, the second type of response, 
originating upstream of the reach of their traverse, could be consistent with TS 
induction near the leading edge. Shapiro reported a vibratory velocity of the plate 
‘at test speed’ as less than 0.015 mm/s at a sound level of 95 dB, i.e. at uic of 3 mm/s. 
Gedney (1983) measured the TS response of the same plate to a 500 Hz sound 
excitation a t  89 dB in presence of flow at 29 m/s. If this response had been dominated 
by the leading-edge vibration, Gedney would have needed only to still the leading 
edge to cancel the TS waves. Gedney, however, accomplished the cancellation by 
superposing an out-of-phase TS wave caused by vibrating the plate with a shaker 
so that the leading-edge amplitude was 29 mm/s, vastly exceeding the passive 
amplitude reported by Shapiro! Thus for this case there must be at least one 
additional effect. We could speculate as to the most likely source of this effect - 
presence of a weak v’ component in the sound beamed at the leading edge from 
upstream, as KKL would suspect, or the thickness effect (which leads to a sharp local 
minimum of Shapiro’s mean pressure coefficient of at least -0.06) as analysed by 
Goldstein (1984), etc. As noted in $ 1, the perennial need for speculation in receptivity 
experiments generally comes from inadequate definition of the forcing field, which 
in the leading-edge problems includes determination of the equivalent of A,(x) and 
#f(x) around the leading edge as well as up to the x station where the response is 
measured. 

5.3. The 1978 KKL experiments 
KKL (1978), in effect, provide the above information near the leading edge plus 
substantial details inside the boundary layer. Its significance goes beyond receptivity 
issues in its documentation of mean and periodic flow in the proximity of a relatively 
sharp leading edge and in its illumination of nearly singular asymmetric behaviour. 
Since fortunately it is available in English, we merely describe its most pertinent 
results and implications and supplement it with figure 11, important for reconciliation 
with our figures; figure 11 was left out of KKL (1978). 

Classes (ii)(c) and (ii)(d) merge when one thinks in terms of the relative velocity 
between the fluid and the leading edge. KKL refer to thin-plunging-airfoil theory as 
a guide to the key effect: a large magnification relating v’ to u‘ around the leading 
edge, which clarifies the high sensitivity to asymmetry and v’. In essence they probe 
the parameter regime where the inviscid-zero-thickness singularity is removed by 
small but finite radius in presence of viscosity. In  their figure 2 with leading edge 
as origin they map out a mean-flow field with no apparent separation, a velocity 
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FIGURE 11 (a, 6 ) .  For caption see facing page. 

overshoot exceeding 1.07 U ,  near x = 4 mm, and a subsequent slow adverse pressure 
gradient. They speak of nearly quantitative verification of their unsteady measure- 
ments. The theory they refer to is due to Maksimov (1979) and Kachanov et al. (1979) 
and consists of difference solutions of linearized Navier-Stokes equations, with strong 
curvature effects bypassed through ad hoc assumptions. No asymptotic arguments 
in the r,, v and o parameters are adduced for these assumptions. Linearity of the 
field is checked experimentally over a range of disturbance amplitudes. 

Despite its appearance in their figures 2, 3 and 5, the KKL 10 mm thick plate is 
asymmetric with a 2 : 132 mm ellipse on the working top side and a 8: 132 mm ellipse 
on the lower side of the nose. All figures and descriptions are for the upper surface 
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FIGURE 11. (a) Development in x of total signal u' and q5 at height y(x) for which U ( y ) / U ,  = 0.5 
over the upper surface of a plate with small radius of curvature at leading edge at x = 0. Forcing 
field due to vertically vibrating horizontal ribbon at y = - 6.5 mm upstream of the edge, with small 
normal velocity fluctuation v; approaching the nose. Critical Re near x = 300 mm. Kachanov et al. 
(1982). ( b )  and (c) Development in x (in mm) of profiles of total signals u'(y)  and $(y) for the flow 
of (a) .  

of the plate. The amplitude isolines and the phase lines for these unsteady fields were 
mapped out in great detail for - 10 mm < x < 20 mm. The fields were generated by 
a 3 mm wide, 0.1 mm thick ribbon vibrating in the y-direction a t  y, = -5.5 mm and 
yr = 6.5 mm in cases (a) and (b) and by the same ribbon rotated 90' to the flow and 
vibrating in the z-direction in case (c). The ribbon, at an unspecified z, upstream of 
the leading edge, generated a fixed dipole field and wake quadrupole fields travelling 
at U ,  & 3 % ; only the outer potential undulations of the wake reached the surface of 
the plate in the region of interest. In case (a), with a flow attachment point on the 
lower surface, the small oscillatory v' component at the nose was associated with a 
prominent frequency-dependent local maximum of u' at about 5 = -0.13, y = 0.4; 
a hot-wire traverse at y = 0.5 indicated a 90' rise and fall of the phase, independent 
of frequency, in the 2.5 mm of travel across this formation. Evidently, unsteady 
vorticity accumulates periodically in this region, without physically shedding ; 
instead, a perturbation wave propagates downstream in the upper boundary layer, 
a wave which KKL identify as a damped TS wave. 

An unpublished figure shows that in case (b), with flow attachment on the upper 
working surface, the same vortical formation has a very small local maximum with 
a 90' fall and rise along the y = 0.5 traverse, and farther downstream a weak wave 
propagating with U ,  in the upper boundary layer. In  our terminology the wave 
corresponds to the u; field of the locally dominant forcing wake and its Stokes layer, 
with any damped TS wave too small to be evident in the total u' and 4 measurements. 
(In a new figure extending past x = 300 and Re,,, the remnants of this small uks or 
new distributed contributions to ukS by the continued but weaker wake forcing are 
seen to amplify - see figure 4 of Dovgal et al. 1979.) The horizontal oscillations in 
case (c) were intended to underscore the w-role by near-cancellation of the v-fluctua- 
tions at the leading edge. As KKL anticipated, the u' peak was replaced by a decrease 
in u' fluctuations as x = 0 was approached and rapid phase changes were absent; 
again there is a weak wave propagating with U ,  in the upper boundary layer, 
essentially the forcing wake field and its Stokes layer. 

9 F 1 . M  171 
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In figure 11 we present the early developments of u' and q5 in the upper boundary 
layer for the key case (a ) ,  a figure left out of KKL (1978). The x-traverse in figure 
11 ( a )  was taken along a path with constant mean velocity U ( y ) / U ,  = 0.5. There is 
a uLin at x = 2.5 not emphasized in figure 11 (a ) ,  a maximum at x = 5.5, followed 
by a sharp drop with another pair of extrema near x = 20. Clearly this is the compact 
region of active generation of unsteady vorticity, with possible negative interference 
past x = 5.5. The external uf(x, 36) in figure 11 ( b )  and the slow change in q5f(x, 36) in 
11 (c) indicate that this region is shielded from the wake and the forcing field is 
dominated by the stationary dipole. The y-profiles at x = 20 in figures 11 (b ,  c )  look 
like a superposition of the dipole forcing with a TS wave according to equation (3.1). 
Unfortunately, there is no information on up(x, y > 6) past x = 20 to indicate the rate 
of decay of the dipole field, which may be slower than the TS decay at these low 
Reynolds numbers. KKL (1982, p. 16) assume that the u' value in figure 11 (a)  
consists of a pure damped TS wave. They comment that the measured decrease by 
a factor of 1.33 between x = 40 and 100 is very much smaller than the 8.2 decay 
factor expected of the TS wave in a nominal Blasius layer. Perhaps this one clear 
inconsistency is explainable by a combination of (i) the presence of slowly falling 
non-zero u; in the total u' curve in figure 11 (a )  and (ii) by true slower TS decay in 
this region of slightly inflected mean velocity profiles; downstream of the afore- 
mentioned mean velocity overshoot at x = 4 there is an adverse pressure gradient in 
which 15 yo or more of the dynamic pressure is slowly recovered. As a consequence 
of (i) the slope a#/ax in figure 11 (a )  differs from kTSr because of the presence of the 
variable ratio p ( x ,  y)  = uf(x, y)/uks(x, y) in (3.1 b )  ; the tempting simple inference from 
figure 11 ( b )  of A,, = 20 mm is likely to be incorrect. 

We are unaware of comparable information on steady and unsteady leading-edge 
effects. Although independent confirmation is always desirable, there is little doubt 
that the geometry in the mathematical models of Goldstein (1983), Murdock (1980), 
and Tam (1981) is over-idealized and governed by different, second-order receptivity 
paths. Furthermore, the experiments of Shapiro (1977) and Gedney (1983) discussed 
in $5.2 must be affected, if not dominated, by leading-edge effects. Clearly the effects 
of unsteady relative motion at sharper leading edges are powerful and the induced 
TS waves can survive the damping upstream of Re,, ; in real geometries that damping 
is much milder than estimated by Murdock because of the inevitable adverse pressure 
gradients associated with the strength-dictated thickness of the models. 
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5.4. Final comparisons 

Dovgal, Kozlov and Levchenko (1980) also placed their vibrating ribbon in the free 
stream a t  x, = 251 mm, y, = 9 mm w 2.26 above the KKL (1978) plate, sufficiently 
far downstream of the adverse pressure gradient. A t  U,  = 5.8 m/s and 
a* = 1.43 mm, the critical Resr for the vibration frequency of 73 Hz occurred 
somewhat upstream of x,. Indeed, the measured u'(y) profiles already disclosed at  
x = 260 substantial uh and uks responses to this forcing field of a fixed doublet and 
superposed convected wake quadrupoles. Comparisons were made with the response 
for the case when the ribbon was moved to yr = 0.15 mm, deep in the boundary layer. 
The significance of the differences, though not negligible, were discounted without 
mentioning the question of the strength of the probably laminar wake contributions. 
Weak wake effects would have been more discernible on phase maps, but in contrast 
to the 1978 paper, none were offered or discussed. It is a pity that this information 
and the definition of the forcing fields through ui(x, yo) and $f(x, yo) with yo above 
the boundary layer for x > 200 are not available; i t  would probably show that the 
doublet excitation field extends over several ATs. Except for accessibility problems 
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near the ribbon location, the configuration had some advantages over that in our 
experiments: (i) the field is quasi-two-dimensional and (ii) the wake induction is 
probably milder. In our case the wake radiation was from transitional and early 
turbulent wakes modulated by the primary sound source at  the test frequency. The 
doublet also has a phase reversal under the ribbon. Hence there should be a region 
of negative interference as in our experiments. 

Experiments by Dovgal & Kozlov (1981a, b) on blunt bodies exposed to sound 
(where distributed TS sources are probably important) also suffered from the absence 
of documentation of the non-constant forcing fields u;(z, yo) and df(z, yo) just outside 
the boundary layer. The experiments are very interesting for the observed patterns 
of behaviour with shape and frequency, but unfortunately they do not provide the 
data to connect cause and effect quantitatively. In the first paper sound was beamed 
from the downstream diffusor axially onto two axisymmetric cylinders, 2 in. in 
diameter; one had a hemispherical nose and the other had its frontal outer rim 
profiled as an elliptical quadrant with the streamwise semi-axis of 25 mm and the 
radial semi-axis of 8.4 mm. The inferential conclusions of Dovgal & Kozlov are rather 
vague: ‘Probably the generation of TS waves takes place throughout the region of 
the adverse pressure gradients ; nevertheless the sound interacts most effectively with 
the boundary layer in the neighbourhood of the nose’. These adverse mean pressure 
gradients extended beyond z = 100, a distance of 5-12 observed A, at frequencies 
from 97 to 273 Hz. For the elliptically rounded rim, there is evidence (their figure 
3) of AuTs contributions at x = 10, where the boundary layer undoubtedly is still 
stable, in qualitative agreement with our view. In  the second paper interesting effects 
of sound beamed from downstream onto a 14% thick symmetric airfoil were 
investigated, but again the variable forcing field, diffracting and scattering around 
the airfoil, was not measured. The uTS response spread over 6 - 8 A ~ s  before its final 
rapid TS amplification by the inflected profiles in the decelerating boundary layer 
as it approached laminar separation. In  this downstream region a measure of control 
over mean profiles and separation was exercised by the sound-induced, overgrown 
vorticity waves. There were no apparent inconsistencies with our concepts of 
non-homogeneous input and response. 

The KnappRoache (1968) largely visual evidence of acoustical TS-wave stimula- 
tion over an axisymmetric tangent ogive-cylinder body has been a long-standing 
reminder of the efficacy of sound-induced distributed TS sources. The nearly singular 
effects due to relative w motion at the sharp nose (such as described in 585.2 and 5.3 
for two-dimensional models) could not seed the observed axisymmetric TS waves ; 
furthermore there were no other concentrated sources since both the mean pressure 
gradient and the acoustic pressure gradient evolved smoothly at the cylinder 
juncture. However, neither this experiment nor its more quantitative 1986 follow-up 
in the same wind tunnel by Kegelman & Mueller provides more than qualitative 
support for our concepts. Besides the lack of adequate definition of ui(x,  yo) and 
CP(x, yo) at the edge of the boundary layer, the variation in the instability parameters 
of the boundary layer itself presents a difficult obstacle to quantitative evaluation. 
This is illustrated and discussed by Kegelman & Mueller in connection with their 
figure 12, which displays widely different neutral curves for three x-stations only 
three ‘natural ’ A,, apart. Although receptivity theory will ultimately be applicable 
to bodies with variable thickness, in explorative experiments the variations in the 
TS amplification characteristics complicates almost critically the task of tracing 
cause and effect quantitatively. These considerations and the awareness of the 
leading-edge effects were primary in our 1981 decisions on the experimental geometry 
in figure 3 where both features are absent. 

9-2 
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5.5.  Toward a unijed view of receptivity experiments 

Of the more reliable and revealing receptivity experiments reviewed in $$5.1-5.4 and 
in the Appendix, two experimental configurations are not adequately covered by the 
concepts of $52.1-2.4. The first is the KKL (1978) leading-edge configuration of $5.3. 
Although the no-slip condition (2.1 ) undoubtedly governs the unsteady wall-vorticity 
sources near and around the leading-edge, the very definition of TS characteristics 
in the region presents a major problem. Furthermore, the sharp curvature may 
be responsible for additional effects. Figure 1 1  suggests that the concepts may be 
applicable in principle from some small distance on, say from x - 4r,. 

The second exceptional configuration is that of Aizin & Polyakov (1979) ; the case 
is discussed in the Appendix and illustrated in figure 1 .  Here our reliance on the no-slip 
condition at a flat wall is spoiled by the change in the boundary itself, albeit very 
small. The boundary information is not contained in our input-controlling function, 
the amplitude A ( x )  of the unsteady pressure gradient beyond the boundary layer. Nor 
does i t  arise from first principles as the wall boundary condition for the periodically 
heated strip of Liepmann et al. (1982) (see end of $4.5). However, the Aizin-Polyakov 
effect undoubtedly generates a non-uniform distribution of vorticity sources a t  the 
wall and over the mylar strip and should be enhanced by the vf (x)  motion induced 
near the edges of the strip, in agreement with our general view. As indicated by 
Goldstein (1985), such local information at protuberance Reynolds numbers on the 
order of unity should reside at the lowest deck of the boundary layer. Once the 
effective (atJay), and vf disturbances are introduced, the stage is set for the TS 
self-excitation loop to take over. 

The Aizin-Polyakov configuration constitutes a concrete example of a new 
‘covert’ class of geometrically enhanced receptivities which may not be traceable to 
changes in commonly measured mean profiles. I n  principle, there is an effect on the 
mean velocity profiles due to the extra-thin A-K mylar strips and their mysterious 
‘technical ’ juncture (see the Appendix). In  practice, the resolution of the instruments, 
near-wall instrument interference, and omnipresent scatter invariably hide such 
weak evidence. Yet in the presence of acoustic irradiation, the Aizin-Polyakov 
experiments document receptivity significantly larger than that of the smooth-wall 
configuration. Recent experiments (Corke et al. 1986), demonstrated growth of TS 
waves in boundary layers with moderate distributed roughness far in excess of - kTSi 
based on measured mean velocity profiles. The overall evidence suggests strongly 
that the most likely cause of this extra growth is roughness-enhanced receptivity to 
free-stream disturbances, including irregular low-frequency pressure fluctuations. 
The enhanced receptivity to sound of isolated roughness elements large enough to 
cause local separation is known and qualitatively understood : strong unsteady 
vorticity sources around the separation line are followed immediately by strong 
inflectional amplification over the separated regions. This is, of course, the basic 
mechanism of boundary-layer tripping devices, but in such cases, the distortion of 
the mean profile is measurable. The special enhanced-receptivity aspect of the A-K 
effect calls for careful explorations of the full neighbourhood of the low-Reynolds- 
number strips by hot-wire anemometer or LDV. 

Besides the distinct phenomenological fields a t  the leading edge and a t  the thin 
mylar strips, the experiments a t  Novosibirsk describe a number of specific receptivity 
fields which appear fully consistent with the concepts of $2. The Dovgal-Kozlov 
experiments on blunt noses further bcar out our observation that the thickness 
distribution of bodies brings out automatically a variation of the amplitude A ( x )  of 
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the acoustic pressure gradients which spawns TS waves. This fact makes the A ( x )  
mechanism almost omnipresent. Their evidence of extensive interference patterns 
between up and AuTs demonstrates again that the non-homogeneous AuTs cumulation 
in (4.1) is not directly dependent on kTSi; unmistakable cumulations are evident on 
all the blunt noses in the region of positive kTsi upstream of Recr, wherever there is 
significant A(x)  variation. The variety of the Soviet experiments with speakers and 
vibrating ribbons further indicates that receptivity does not distinguish between 
acoustic and 'incompressible ' unsteady pressure gradients or between far field and 
near field, in consonance with the controlling no-slip condition (2.1). The valid Soviet 
distinction between distributed and localized sources of TS induction cleared away 
confusing interpretations of early experiments but did not address the issue of the 
decomposition of the total measured field into all the conceptually identifiable 
constituents nor the deeper issue of the nature of the mechanisms of receptivity. 

Mungur (1977) and unpublished work by M. Gaster (1972) looked for the key to 
acoustic receptivity by decomposing the total field into irrotational forcing velocity 
fields and divergence-free velocity response fields. There are some difficulties in this 
approach - the TS response field, after all, has an irrotational component which 
extends beyond 6. However, both authors identified a probable forced contribution 
to uTs as the non-homogeneous field term vf U' in the x-momentum equation without 
considering what conditions prevent its cumulative effect from vanishing. The term 
is equivalent to  our up u" contribution to CTs; the condition for its non-vanishing 
contribution to d z / d x  is equation (2.10). The corresponding early build-up of the 
vorticity field away from the wall is clearly distinguishable in Fasel's (1976) 
numerical experiment. I n  the case U experiment in $4.3 the equivalent non-diffusive 
forced growth of uks is observed beyond ycr a t  x = 0 in figure 8 ( a ) ;  in case U, i t  
emerges at x = 69 in figure 10(b). 

The mechanism is, of course, operative for some distance upstream of these two 
sections, where A ( z )  varies but uks remains obscured by noise and the large u; 
component of the measured signal. Upstream of the sections with such clear evidence 
of the incipient AuTs response the measured fields are Stokes-like, in accordance with 
the theory of $2.1. The upstream Stokes-like profiles appear in all our experiments 
- see figures 7(a)(i), 7(b)(i), 8(a,  d ) ,  9(a)(i)  and (ii) and 10(b, c). No independent 
evidence for this feature has come from any other receptivity experiments. It is also 
of some significance that the incipient growth from the Stokes-like distributions due 
to  non-homogeneous AuTs increments, can take place anywhere including in between 
the two branches of the neutral curve (as in the 1976 experiments of Polyakov et al. 
and in our cases U and Uw), and not only at the leading edge or at x,,, as is 
occasionally implied. 

According to (2.1) any unsteady, spatially varying pressure field beyond the 
boundary layer imprints vorticity sources in the lowest deck of the boundary layer 
in its own image. If these forced fluctuations near the wall do not average out to zero, 
this represents a clear input mechanism from external disturbances to the forced 
vorticity field in the boundary layer, not discussed by Mungur or Gaster. In essence, 
part of the reservoir of environmental disturbances outside the boundary layer is 
transferred directly to  the vortical disturbances deep within the boundary layer; 
there the boundary-layer filter-amplifier can damp or enhance them. This basic 
seeding path cannot be avoided as such; however, its efficacy in harmonic excitation 
depends on A ( x ) .  

The heuristic arguments at the end of $2.4 in connection with excitation due to  
wakes imply that the external forcing pressure field need not be stationary; in fact, 
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the propagation speed of the external field does not matter as long as the local 
Fourier transform of A,(x), AA,,(kTsr - k,,), does not vanish when evaluated at  the 
difference wavenumber kTSr - k,,. The increments AuTs for higher x-values in the case 
U, of 54.5, observable in figures 10(b,  c), are caused primarily by such wake forcing. 
Hot-wire traverses indicated that the forcing wakes of the shield plate and of the 
piping to  the pressure source in figure 3, as well as the convected fluid ejected 
periodically from the source orifices, were turbulent or transitional in cases U and 
U, with forced exp ( - iwt) acoustic modulation. Since the strength of the resultant 
travelling pressure fields depended on sensitive secondary aspects of the configura- 
tion, we considered the excited radiating wakes as a nuisance and did not attempt 
to map them in detail. However, the case U, demonstrates that  external quadrupoles 
travelling with phase speed c,, =l crTS can definitely induce TS waves. 

The implication of these findings is that this receptivity path probably exists for 
free-stream turbulence above the boundary layer ys even when it is not modulated 
a t  wTs. Active, i.e. non-frozen, larger-scale turbulent structures above ys transmit 
unsteady, x- and z-dependent vft and p,, fields on their scales through the boundary 
layer to the wall. Under proper conditions, the non-uniformity of these forcing fields 
in x, z and t may lead to  build-up of TS wave packets through processes equivalent 
to those in case U,. That the averaged spatial growth of u& could then exceed - kTsi, 
as Kendall (1984) has observed, would not be surprising; as we have seen in case U, 
in 54.5, the AuTS cumulation rate can be far larger than -kTsi. The difficulty in 
modelling this receptivity path mathematically is in the representation of the forcing 
fields as non-averaged functions on which there is little information. While this 
receptivity path probably exists, there is no assurance that there are no other more 
efficient paths. In  the preceding discussion the effect of the turbulent vortical field 
which is ingested into the boundary layer has been left out. There is scattered 
evidence that the turbulent disturbances ingested near the leading edge of axisym- 
metric bodies decay very rapidly near the wall. However, there is no information on 
the interaction between turbulent vorticity convected into the boundary layer near 
and past x,, and the vorticity and shear of the boundary layer itself. Contributions 
AuTs from this interaction may or may not be more efficient than the generalized 
analogue of the U, case. 

A comment is in order concerning the practical problem of receptivity to  elastic 
vibrations of the body surface away from the leading edge. In  this non-homogeneous 
problem the forcing conditions are a t  the wall instead of beyond the boundary layer, 
and they are quite regular. For small vibrations the linearized boundary condition 
on v a t  the moving wall should be transferable to y = 0. The resulting pressure field 
is unknown and must be determined, possibly through triple-deck formulation. 
Physically, the role of the forcing p ,  and v, fields in the receptivity part of the problem 
should be qualitatively the same as in the receptivity paths examined earlier. A 
number of unexpected early transitions to turbulence in flight has been vaguely 
attributed to vibrations of the skin of the vehicle. Careful analytical treatment 
should identify the dangerous conditions and stimulate corroborating experiments. 
A report by Lemcke et al. (1970) on an international cooperative research effort in 
wind tunnels and in flight using the same physical model of the JARIBU hypersonic 
vehicle makes most instructive reading ; a gross discrepancy between flight and 
laboratory transition Reynolds numbers was ultimately ascribed to disturbances due 
to skin vibrations induced by the rocket motor on the basis of circumstantial but 
plausible evidence. 

The relevance of the present approach to  boundary-layer receptivities to free- 
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stream turbulence, to  wall vibrations, to local harmonic wall heating of Liepmann 
et al. (1982), etc., indicates that  the choice of the variables comes close to  the essence 
of the phenomena. The approach is really forced upon the experimenter when faced 
with interpretation of the measured total u‘ and $-fields which the instruments 
cannot decompose into the forcing and response fields. The decomposition must rely 
therefore on the physico-mathematical properties of the superposed fields. The 
adoption of the ( ) f ,  ( )d and ( )TS components has the advantage of paralleling the 
theory of forced linear systems. This immediately mandates the experimental 
definition of the forcing field by its values around the open domain, e.g. AA’B’C‘D‘D 
in figures 3 and 6. (Of all the receptivity experiments only KKL (1978) provided 
equivalent information.) The fact that  along A’B’C’D’ the fields ( )d and ( )TS are 
dwarfed by ( )f is very useful. The focus on vorticity is also fruitful because ( a )  the 
boundary condition ( l / p )  ap/ax = u . aC/ay shows how the external disturbance 
(albeit slightly modified by the passage through the sheared layer) forces a distri- 
bution of wall vorticity sources in its image, and ( b )  the vorticity of the forcing field 
is confined to  the thin Stokes sublayer. Characteristic ( b )  makes possible the identi- 
fication of the other transfer mechanism: the conversion a t  any point of mean 
boundary-layer vorticity u“ by the forcing unsteady transverse velocity field of into 
an increment in unsteady TS vorticity or, after multiplication by CTs and averaging, 
into a contribution to  the growth of TS enstrophy. These are, of course, heuristic 
arguments and should be verified by rigorous theory, possibly by techniques 
described by Reshotko (1984) and Tam (1981). Nevertheless, the overall concepts 
appear to unify rather successfully the interpretation of all the reliable experiments 
on receptivity to unsteady pressure gradients. 

Since this paper was written some relevant papers have appeared in the literature, 
e.g. six papers in Kozlov (1985) and a review of the triple-deck approach to 
receptivity problems by Goldstein (1986). 
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Research Office through Project P17690-E. Special thanks go to Michael Plesniak for 
his enthusiastic assistance with the experiments. The contribution of results of 
unpublished numerical experiments by Hermann Fasel to our model is gratefully 
acknowledged. 

Appendix. The Aizin-Polyakov experiment on irradiated roughness 
The rather intriguing experiment to which figure 1 refers (Aizin & Polyakov 1979) 

has appeared only as a publicly unavailable Russian ‘preprint’; i t  is therefore 
desirablc to describe briefly its contents. The 25 mm thick flat plate of Polyakov 
et al. (1976) was used, primarily a t  free-stream speed U, of 23.4 m/s. It had a composite 
elliptic nose (2 : 165 mm at  upper surface, 23 : 69 mm a t  lower surface) ; at z = 565 mm 
the nose is said to  have an otherwise unspecified ‘technological juncture’ with the 
main body of the plate, which extended to 3900 mm. The roughness in the form of 
extra-thin mylar strips 12 mm wide was affixed to the plate at x = 565, corresponding 
to Re8, = 1550; profilometer ( !) measurements in situ indicated three operational 
thicknesses in mm: H ,  = 0.012-0.017, H ,  = 0.020-0.025, and H3 = 0.032-4.037. 
With u = 15.10-6 m2/s, the inferred 6* is 1 .O mm so that HIS* values are below 4 yo. 
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These are exceedingly small roughnesses, immersed deep in the linear stress region 
of the Blasius profile; their local Reynolds number Re, = HU(H)/v is then given by 
the formula Re, = 0.57Re,,(H/6*)2. Re, rises quadratically up to 1.05 for H,. No 
inertial separation a t  the edges is expected for such low Re,. The effects observed 
should be distinct from the known separation-controlled high sensitivity to sound for 
larger single roughnesses such as H = 0.158*, Re, = 20, which was used in preliminary 
experiments by Aizin & Polyakov. The acoustic excitation at 138 Hz and 104 dB was 
beamed upstream along the plate from a speaker in a downstream diffusor. The 
resulting unsteady field in our figure 1 was measured with a DISA hot wire, 
traversing a t  an unspecified height y (or possibly a t  near and downstream of 
protuberance H,. 

That ratio of the u& response in figure 1 to the excitation uic is shown in their 
figure 3 to follow the same growth curve for excitations of 100, 104 and 108 dB, i.e. 
the experiments are in a linear regime. At Re,. of 1550, the frequency of 138 Hz 
corresponds to  dimensionless F = 27cfv/q = 24. and a TS wavelength of 50 mm. 
The strips with a width of 0.24hTs represent very local wall-geometry perturbations 
ending physically a t  2,. A coefficient of generation or receptivity, k,,, is defined as 
the ratio of u&,/uH, at x,; uks at x, was obtained by upstream exponential 
extrapolation from the total experimental u‘ for 5 > 600 mm and equations (3.1). An 
inadequately described perturbation theory of Aizin (1974) and Aizin & Maksimov 
(1978) seems to  invoke feedback. With many approximations the theory leads to an 
explicit expression for k,,, which is linear in H(expikTsrl- I ) ,  where 1 is the width 
of the strip, and is further dependent on the characteristics of the Orr-Sommerfeld 
operator and its adjoint. Total u’ developments akin to  that in our figure 1 were 
obtained for eleven distinct conditions; the corresponding coefficients k,, were 
extracted and compared with the formula in their table 1 .  The highest coefficient, 
0.04, occurred for the largest H,, 0.0345 mm, of our figure 1,  and was within 1.3 % 
of the theoretical value. Figure 1 indeed shows that an irradiated protuberance of 
miniscule height is effective in generating TS waves even though the coefficient is 
very small. 

Discrepancies between experiment and theory exceeded 12 yo in five cases, two of 
which call for discussion. First, a non-zero coefficient k,,  of 0.0064 was inferred from 
data for the polished plate without any artificial roughness. The authors decided that 
there must be an effective roughness a t  the aforementioned ‘technological junction ’ 
at x = 0.565 m. From the theoretical linearity in H ,  corroborated well enough by 
the results for H I ,  H, and H ,  in their figure 4, they assigned an effective H of 
0.0074.009 mm to the juncture. They did not undertake any more difficult measure- 
ments to verify this assessment on the bulky flat plate. Theoretical support for 
great ‘scattering power’ of small changes in local wall curvature comes from 
Goldstein’s 1985 triple-deck approach to the problem. An implication of Goldstein’s 
theory is that measurable local mean pressure gradients in x must be present to 
sustain the scattering capability. Whatever the exact cause of the ‘effective rough- 
ness’, the corresponding u& growth is documented past Re,. of 2200 in their figure 
4, substantially downstream from the inferred initiation a t  Re,, of 1550. 

The second discrepancy of concern occurs relative to the dependence of k,, on the 
width of the strips 1. Only two runs with 1 different from 1, = 12 mm = 0.24ATs were 
made, namely for 1, = 0.5hTS and 1, = ATs. The coefficient k,, for 1, was 1.39 times 
larger than for I,, in good agreement with theory. However, for 1, the coefficient was 
0.006 instead of zero. I n  the terminology of $4.3, substantial negative interference 
apparently takes place between AuTS increments initiated near the leading and 
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trailing edges of the mylar strips. The authors again attribute the non-zero contri- 
bution to the ‘technological juncture’ which ‘inevitably creates a step on the surface 
of the strip’ and cite the closeness of the two coefficients 0.0064 and 0.006 as 
supporting evidence. They also report that comparison with theory was made 
impossible when the 12 mm strip was moved downstream to 2 = 1.127 m (where 
Regr = 2200) and the frequency raised above 100 Hz because ‘the registered response 
was largely determined by the u& contribution generated at  the upstream juncture ’. 
This documents again one major difficulty in receptivity experiments ; the slowly 
developing impact of weak but effective sources is often camouflaged over long 
distances by other superposed signals and noise so that exact causes are hard to trace. 
Clearly, students of receptivity should be aware of such lessons from the experiments 
of Aizin & Polyakov as well as of their specific findings and interpretations. 
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